ffmpeg/libavfilter/vf_paletteuse.c

1011 lines
38 KiB
C

/*
* Copyright (c) 2015 Stupeflix
* Copyright (c) 2022 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Use a palette to downsample an input video stream.
*/
#include "libavutil/bprint.h"
#include "libavutil/file_open.h"
#include "libavutil/internal.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/qsort.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "palette.h"
#include "video.h"
enum dithering_mode {
DITHERING_NONE,
DITHERING_BAYER,
DITHERING_HECKBERT,
DITHERING_FLOYD_STEINBERG,
DITHERING_SIERRA2,
DITHERING_SIERRA2_4A,
DITHERING_SIERRA3,
DITHERING_BURKES,
DITHERING_ATKINSON,
NB_DITHERING
};
enum diff_mode {
DIFF_MODE_NONE,
DIFF_MODE_RECTANGLE,
NB_DIFF_MODE
};
struct color_info {
uint32_t srgb;
int32_t lab[3];
};
struct color_node {
struct color_info c;
uint8_t palette_id;
int split;
int left_id, right_id;
};
#define CACHE_SIZE (1<<15)
struct cached_color {
uint32_t color;
uint8_t pal_entry;
};
struct cache_node {
struct cached_color *entries;
int nb_entries;
};
struct PaletteUseContext;
typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in,
int x_start, int y_start, int width, int height);
typedef struct PaletteUseContext {
const AVClass *class;
FFFrameSync fs;
struct cache_node cache[CACHE_SIZE]; /* lookup cache */
struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
uint32_t palette[AVPALETTE_COUNT];
int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
int trans_thresh;
int palette_loaded;
int dither;
int new;
set_frame_func set_frame;
int bayer_scale;
int ordered_dither[8*8];
int diff_mode;
AVFrame *last_in;
AVFrame *last_out;
/* debug options */
char *dot_filename;
int calc_mean_err;
uint64_t total_mean_err;
} PaletteUseContext;
#define OFFSET(x) offsetof(PaletteUseContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption paletteuse_options[] = {
{ "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, .unit = "dithering_mode" },
{ "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "sierra3", "Frankie Sierra dithering v3 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA3}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "burkes", "Burkes dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BURKES}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "atkinson", "Atkinson dithering by Bill Atkinson at Apple Computer (error diffusion)",0, AV_OPT_TYPE_CONST, {.i64=DITHERING_ATKINSON}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" },
{ "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
{ "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, .unit = "diff_mode" },
{ "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, .unit = "diff_mode" },
{ "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS },
/* following are the debug options, not part of the official API */
{ "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(paletteuse);
static int load_apply_palette(FFFrameSync *fs);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
int ret;
if ((ret = ff_formats_ref(ff_make_format_list(in_fmts),
&ctx->inputs[0]->outcfg.formats)) < 0 ||
(ret = ff_formats_ref(ff_make_format_list(inpal_fmts),
&ctx->inputs[1]->outcfg.formats)) < 0 ||
(ret = ff_formats_ref(ff_make_format_list(out_fmts),
&ctx->outputs[0]->incfg.formats)) < 0)
return ret;
return 0;
}
static av_always_inline uint32_t dither_color(uint32_t px, int er, int eg,
int eb, int scale, int shift)
{
return (px & 0xff000000)
| av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
| av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
| av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
}
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
{
const uint8_t alpha_a = a->srgb >> 24;
const uint8_t alpha_b = b->srgb >> 24;
if (alpha_a < trans_thresh && alpha_b < trans_thresh) {
return 0;
} else if (alpha_a >= trans_thresh && alpha_b >= trans_thresh) {
const int64_t dL = a->lab[0] - b->lab[0];
const int64_t da = a->lab[1] - b->lab[1];
const int64_t db = a->lab[2] - b->lab[2];
const int64_t ret = dL*dL + da*da + db*db;
return FFMIN(ret, INT32_MAX - 1);
} else {
return INT32_MAX - 1;
}
}
static struct color_info get_color_from_srgb(uint32_t srgb)
{
const struct Lab lab = ff_srgb_u8_to_oklab_int(srgb);
struct color_info ret = {.srgb=srgb, .lab={lab.L, lab.a, lab.b}};
return ret;
}
struct nearest_color {
int node_pos;
int64_t dist_sqd;
};
static void colormap_nearest_node(const struct color_node *map,
const int node_pos,
const struct color_info *target,
const int trans_thresh,
struct nearest_color *nearest)
{
const struct color_node *kd = map + node_pos;
int nearer_kd_id, further_kd_id;
const struct color_info *current = &kd->c;
const int64_t current_to_target = diff(target, current, trans_thresh);
if (current_to_target < nearest->dist_sqd) {
nearest->node_pos = node_pos;
nearest->dist_sqd = current_to_target;
}
if (kd->left_id != -1 || kd->right_id != -1) {
const int64_t dx = target->lab[kd->split] - current->lab[kd->split];
if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
if (nearer_kd_id != -1)
colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest);
if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest);
}
}
static av_always_inline uint8_t colormap_nearest(const struct color_node *node, const struct color_info *target, const int trans_thresh)
{
struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
colormap_nearest_node(node, 0, target, trans_thresh, &res);
return node[res.node_pos].palette_id;
}
struct stack_node {
int color_id;
int dx2;
};
/**
* Check if the requested color is in the cache already. If not, find it in the
* color tree and cache it.
*/
static av_always_inline int color_get(PaletteUseContext *s, uint32_t color)
{
struct color_info clrinfo;
const uint32_t hash = ff_lowbias32(color) & (CACHE_SIZE - 1);
struct cache_node *node = &s->cache[hash];
struct cached_color *e;
// first, check for transparency
if (color>>24 < s->trans_thresh && s->transparency_index >= 0) {
return s->transparency_index;
}
for (int i = 0; i < node->nb_entries; i++) {
e = &node->entries[i];
if (e->color == color)
return e->pal_entry;
}
e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
sizeof(*node->entries), NULL);
if (!e)
return AVERROR(ENOMEM);
e->color = color;
clrinfo = get_color_from_srgb(color);
e->pal_entry = colormap_nearest(s->map, &clrinfo, s->trans_thresh);
return e->pal_entry;
}
static av_always_inline int get_dst_color_err(PaletteUseContext *s,
uint32_t c, int *er, int *eg, int *eb)
{
uint32_t dstc;
const int dstx = color_get(s, c);
if (dstx < 0)
return dstx;
dstc = s->palette[dstx];
if (dstx == s->transparency_index) {
*er = *eg = *eb = 0;
} else {
const uint8_t r = c >> 16 & 0xff;
const uint8_t g = c >> 8 & 0xff;
const uint8_t b = c & 0xff;
*er = (int)r - (int)(dstc >> 16 & 0xff);
*eg = (int)g - (int)(dstc >> 8 & 0xff);
*eb = (int)b - (int)(dstc & 0xff);
}
return dstx;
}
static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in,
int x_start, int y_start, int w, int h,
enum dithering_mode dither)
{
const int src_linesize = in ->linesize[0] >> 2;
const int dst_linesize = out->linesize[0];
uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
uint8_t *dst = out->data[0] + y_start*dst_linesize;
w += x_start;
h += y_start;
for (int y = y_start; y < h; y++) {
for (int x = x_start; x < w; x++) {
int er, eg, eb;
if (dither == DITHERING_BAYER) {
const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
const uint8_t a8 = src[x] >> 24;
const uint8_t r8 = src[x] >> 16 & 0xff;
const uint8_t g8 = src[x] >> 8 & 0xff;
const uint8_t b8 = src[x] & 0xff;
const uint8_t r = av_clip_uint8(r8 + d);
const uint8_t g = av_clip_uint8(g8 + d);
const uint8_t b = av_clip_uint8(b8 + d);
const uint32_t color_new = (unsigned)(a8) << 24 | r << 16 | g << 8 | b;
const int color = color_get(s, color_new);
if (color < 0)
return color;
dst[x] = color;
} else if (dither == DITHERING_HECKBERT) {
const int right = x < w - 1, down = y < h - 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
} else if (dither == DITHERING_FLOYD_STEINBERG) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
} else if (dither == DITHERING_SIERRA2) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, left2 = x > x_start + 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
if (down) {
if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
}
} else if (dither == DITHERING_SIERRA2_4A) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
} else if (dither == DITHERING_SIERRA3) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, down2 = y < h - 2, left2 = x > x_start + 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 5, 5);
if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 5);
if (down) {
if (left2) src[src_linesize + x - 2] = dither_color(src[src_linesize + x - 2], er, eg, eb, 2, 5);
if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 4, 5);
if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 5);
if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 4, 5);
if (right2) src[src_linesize + x + 2] = dither_color(src[src_linesize + x + 2], er, eg, eb, 2, 5);
if (down2) {
if (left) src[src_linesize*2 + x - 1] = dither_color(src[src_linesize*2 + x - 1], er, eg, eb, 2, 5);
if (1) src[src_linesize*2 + x ] = dither_color(src[src_linesize*2 + x ], er, eg, eb, 3, 5);
if (right) src[src_linesize*2 + x + 1] = dither_color(src[src_linesize*2 + x + 1], er, eg, eb, 2, 5);
}
}
} else if (dither == DITHERING_BURKES) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, left2 = x > x_start + 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 8, 5);
if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 4, 5);
if (down) {
if (left2) src[src_linesize + x - 2] = dither_color(src[src_linesize + x - 2], er, eg, eb, 2, 5);
if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 4, 5);
if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 8, 5);
if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 4, 5);
if (right2) src[src_linesize + x + 2] = dither_color(src[src_linesize + x + 2], er, eg, eb, 2, 5);
}
} else if (dither == DITHERING_ATKINSON) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, down2 = y < h - 2;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb);
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 1, 3);
if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 1, 3);
if (down) {
if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 3);
if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 3);
if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 3);
if (down2) src[src_linesize*2 + x ] = dither_color(src[src_linesize*2 + x ], er, eg, eb, 1, 3);
}
} else {
const int color = color_get(s, src[x]);
if (color < 0)
return color;
dst[x] = color;
}
}
src += src_linesize;
dst += dst_linesize;
}
return 0;
}
#define INDENT 4
static void disp_node(AVBPrint *buf,
const struct color_node *map,
int parent_id, int node_id,
int depth)
{
const struct color_node *node = &map[node_id];
const uint32_t fontcolor = node->c.lab[0] > 0x7fff ? 0 : 0xffffff;
const int lab_comp = node->split;
av_bprintf(buf, "%*cnode%d ["
"label=\"%c%d%c%d%c%d%c\" "
"fillcolor=\"#%06"PRIX32"\" "
"fontcolor=\"#%06"PRIX32"\"]\n",
depth*INDENT, ' ', node->palette_id,
"[ "[lab_comp], node->c.lab[0],
"][ "[lab_comp], node->c.lab[1],
" ]["[lab_comp], node->c.lab[2],
" ]"[lab_comp],
node->c.srgb & 0xffffff,
fontcolor);
if (parent_id != -1)
av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
map[parent_id].palette_id, node->palette_id);
if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
}
// debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
static int disp_tree(const struct color_node *node, const char *fname)
{
AVBPrint buf;
FILE *f = avpriv_fopen_utf8(fname, "w");
if (!f) {
int ret = AVERROR(errno);
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
fname, av_err2str(ret));
return ret;
}
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
av_bprintf(&buf, "digraph {\n");
av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
disp_node(&buf, node, -1, 0, 0);
av_bprintf(&buf, "}\n");
fwrite(buf.str, 1, buf.len, f);
fclose(f);
av_bprint_finalize(&buf, NULL);
return 0;
}
struct color {
struct Lab value;
uint8_t pal_id;
};
struct color_rect {
int32_t min[3];
int32_t max[3];
};
typedef int (*cmp_func)(const void *, const void *);
#define DECLARE_CMP_FUNC(name) \
static int cmp_##name(const void *pa, const void *pb) \
{ \
const struct color *a = pa; \
const struct color *b = pb; \
return FFDIFFSIGN(a->value.name, b->value.name); \
}
DECLARE_CMP_FUNC(L)
DECLARE_CMP_FUNC(a)
DECLARE_CMP_FUNC(b)
static const cmp_func cmp_funcs[] = {cmp_L, cmp_a, cmp_b};
static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
int *component, const struct color_rect *box)
{
int wL, wa, wb;
int longest = 0;
unsigned nb_color = 0;
struct color_rect ranges;
struct color tmp_pal[256];
cmp_func cmpf;
ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xffff;
ranges.max[0] = ranges.max[1] = ranges.max[2] = -0xffff;
for (int i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = palette[i];
const uint8_t a = c >> 24;
const struct Lab lab = ff_srgb_u8_to_oklab_int(c);
if (color_used[i] || (a != 0xff) ||
lab.L < box->min[0] || lab.a < box->min[1] || lab.b < box->min[2] ||
lab.L > box->max[0] || lab.a > box->max[1] || lab.b > box->max[2])
continue;
if (lab.L < ranges.min[0]) ranges.min[0] = lab.L;
if (lab.a < ranges.min[1]) ranges.min[1] = lab.a;
if (lab.b < ranges.min[2]) ranges.min[2] = lab.b;
if (lab.L > ranges.max[0]) ranges.max[0] = lab.L;
if (lab.a > ranges.max[1]) ranges.max[1] = lab.a;
if (lab.b > ranges.max[2]) ranges.max[2] = lab.b;
tmp_pal[nb_color].value = lab;
tmp_pal[nb_color].pal_id = i;
nb_color++;
}
if (!nb_color)
return -1;
/* define longest axis that will be the split component */
wL = ranges.max[0] - ranges.min[0];
wa = ranges.max[1] - ranges.min[1];
wb = ranges.max[2] - ranges.min[2];
if (wb >= wL && wb >= wa) longest = 2;
if (wa >= wL && wa >= wb) longest = 1;
if (wL >= wa && wL >= wb) longest = 0;
cmpf = cmp_funcs[longest];
*component = longest;
/* sort along this axis to get median */
AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
return tmp_pal[nb_color >> 1].pal_id;
}
static int colormap_insert(struct color_node *map,
uint8_t *color_used,
int *nb_used,
const uint32_t *palette,
const int trans_thresh,
const struct color_rect *box)
{
int component, cur_id;
int comp_value;
int node_left_id = -1, node_right_id = -1;
struct color_node *node;
struct color_rect box1, box2;
const int pal_id = get_next_color(color_used, palette, &component, box);
if (pal_id < 0)
return -1;
/* create new node with that color */
cur_id = (*nb_used)++;
node = &map[cur_id];
node->split = component;
node->palette_id = pal_id;
node->c = get_color_from_srgb(palette[pal_id]);
color_used[pal_id] = 1;
/* get the two boxes this node creates */
box1 = box2 = *box;
comp_value = node->c.lab[component];
box1.max[component] = comp_value;
box2.min[component] = FFMIN(comp_value + 1, 0xffff);
node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1);
if (box2.min[component] <= box2.max[component])
node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2);
node->left_id = node_left_id;
node->right_id = node_right_id;
return cur_id;
}
static int cmp_pal_entry(const void *a, const void *b)
{
const int c1 = *(const uint32_t *)a & 0xffffff;
const int c2 = *(const uint32_t *)b & 0xffffff;
return c1 - c2;
}
static void load_colormap(PaletteUseContext *s)
{
int nb_used = 0;
uint8_t color_used[AVPALETTE_COUNT] = {0};
uint32_t last_color = 0;
struct color_rect box;
if (s->transparency_index >= 0) {
FFSWAP(uint32_t, s->palette[s->transparency_index], s->palette[255]);
}
/* disable transparent colors and dups */
qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette), cmp_pal_entry);
for (int i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = s->palette[i];
if (i != 0 && c == last_color) {
color_used[i] = 1;
continue;
}
last_color = c;
if (c >> 24 < s->trans_thresh) {
color_used[i] = 1; // ignore transparent color(s)
continue;
}
}
box.min[0] = box.min[1] = box.min[2] = -0xffff;
box.max[0] = box.max[1] = box.max[2] = 0xffff;
colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box);
if (s->dot_filename)
disp_tree(s->map, s->dot_filename);
}
static void set_processing_window(enum diff_mode diff_mode,
const AVFrame *prv_src, const AVFrame *cur_src,
const AVFrame *prv_dst, AVFrame *cur_dst,
int *xp, int *yp, int *wp, int *hp)
{
int x_start = 0, y_start = 0;
int width = cur_src->width;
int height = cur_src->height;
if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) {
int y;
int x_end = cur_src->width - 1,
y_end = cur_src->height - 1;
const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
const uint8_t *prv_dstp = prv_dst->data[0];
uint8_t *cur_dstp = cur_dst->data[0];
const int prv_src_linesize = prv_src->linesize[0] >> 2;
const int cur_src_linesize = cur_src->linesize[0] >> 2;
const int prv_dst_linesize = prv_dst->linesize[0];
const int cur_dst_linesize = cur_dst->linesize[0];
/* skip common lines */
while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
cur_srcp + y_start*cur_src_linesize,
cur_src->width * 4)) {
memcpy(cur_dstp + y_start*cur_dst_linesize,
prv_dstp + y_start*prv_dst_linesize,
cur_dst->width);
y_start++;
}
while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
cur_srcp + y_end*cur_src_linesize,
cur_src->width * 4)) {
memcpy(cur_dstp + y_end*cur_dst_linesize,
prv_dstp + y_end*prv_dst_linesize,
cur_dst->width);
y_end--;
}
height = y_end + 1 - y_start;
/* skip common columns */
while (x_start < x_end) {
int same_column = 1;
for (y = y_start; y <= y_end; y++) {
if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
same_column = 0;
break;
}
}
if (!same_column)
break;
x_start++;
}
while (x_end > x_start) {
int same_column = 1;
for (y = y_start; y <= y_end; y++) {
if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
same_column = 0;
break;
}
}
if (!same_column)
break;
x_end--;
}
width = x_end + 1 - x_start;
if (x_start) {
for (y = y_start; y <= y_end; y++)
memcpy(cur_dstp + y*cur_dst_linesize,
prv_dstp + y*prv_dst_linesize, x_start);
}
if (x_end != cur_src->width - 1) {
const int copy_len = cur_src->width - 1 - x_end;
for (y = y_start; y <= y_end; y++)
memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
prv_dstp + y*prv_dst_linesize + x_end + 1,
copy_len);
}
}
*xp = x_start;
*yp = y_start;
*wp = width;
*hp = height;
}
static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
{
int x, y, w, h, ret;
AVFilterContext *ctx = inlink->dst;
PaletteUseContext *s = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
*outf = NULL;
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
set_processing_window(s->diff_mode, s->last_in, in,
s->last_out, out, &x, &y, &w, &h);
av_frame_unref(s->last_out);
if ((ret = av_frame_replace(s->last_in, in)) < 0 ||
(ret = av_frame_ref(s->last_out, out)) < 0 ||
(ret = ff_inlink_make_frame_writable(inlink, &s->last_in)) < 0) {
av_frame_free(&out);
*outf = NULL;
return ret;
}
ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
w, h, x, y, x+w, y+h, in->width, in->height);
ret = s->set_frame(s, out, in, x, y, w, h);
if (ret < 0) {
av_frame_free(&out);
*outf = NULL;
return ret;
}
memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
*outf = out;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
int ret;
AVFilterContext *ctx = outlink->src;
PaletteUseContext *s = ctx->priv;
ret = ff_framesync_init_dualinput(&s->fs, ctx);
if (ret < 0)
return ret;
s->fs.opt_repeatlast = 1; // only 1 frame in the palette
s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY;
s->fs.on_event = load_apply_palette;
outlink->w = ctx->inputs[0]->w;
outlink->h = ctx->inputs[0]->h;
outlink->time_base = ctx->inputs[0]->time_base;
if ((ret = ff_framesync_configure(&s->fs)) < 0)
return ret;
return 0;
}
static int config_input_palette(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
if (inlink->w * inlink->h != AVPALETTE_COUNT) {
av_log(ctx, AV_LOG_ERROR,
"Palette input must contain exactly %d pixels. "
"Specified input has %dx%d=%d pixels\n",
AVPALETTE_COUNT, inlink->w, inlink->h,
inlink->w * inlink->h);
return AVERROR(EINVAL);
}
return 0;
}
static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
{
int i, x, y;
const uint32_t *p = (const uint32_t *)palette_frame->data[0];
const ptrdiff_t p_linesize = palette_frame->linesize[0] >> 2;
s->transparency_index = -1;
if (s->new) {
memset(s->palette, 0, sizeof(s->palette));
memset(s->map, 0, sizeof(s->map));
for (i = 0; i < CACHE_SIZE; i++)
av_freep(&s->cache[i].entries);
memset(s->cache, 0, sizeof(s->cache));
}
i = 0;
for (y = 0; y < palette_frame->height; y++) {
for (x = 0; x < palette_frame->width; x++) {
s->palette[i] = p[x];
if (p[x]>>24 < s->trans_thresh) {
s->transparency_index = i; // we are assuming at most one transparent color in palette
}
i++;
}
p += p_linesize;
}
load_colormap(s);
if (!s->new)
s->palette_loaded = 1;
}
static int load_apply_palette(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
AVFilterLink *inlink = ctx->inputs[0];
PaletteUseContext *s = ctx->priv;
AVFrame *master, *second, *out = NULL;
int ret;
// writable for error diffusal dithering
ret = ff_framesync_dualinput_get_writable(fs, &master, &second);
if (ret < 0)
return ret;
if (!master || !second) {
av_frame_free(&master);
return AVERROR_BUG;
}
if (!s->palette_loaded) {
load_palette(s, second);
}
ret = apply_palette(inlink, master, &out);
av_frame_free(&master);
if (ret < 0)
return ret;
return ff_filter_frame(ctx->outputs[0], out);
}
#define DEFINE_SET_FRAME(name, value) \
static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
int x_start, int y_start, int w, int h) \
{ \
return set_frame(s, out, in, x_start, y_start, w, h, value); \
}
DEFINE_SET_FRAME(none, DITHERING_NONE)
DEFINE_SET_FRAME(bayer, DITHERING_BAYER)
DEFINE_SET_FRAME(heckbert, DITHERING_HECKBERT)
DEFINE_SET_FRAME(floyd_steinberg, DITHERING_FLOYD_STEINBERG)
DEFINE_SET_FRAME(sierra2, DITHERING_SIERRA2)
DEFINE_SET_FRAME(sierra2_4a, DITHERING_SIERRA2_4A)
DEFINE_SET_FRAME(sierra3, DITHERING_SIERRA3)
DEFINE_SET_FRAME(burkes, DITHERING_BURKES)
DEFINE_SET_FRAME(atkinson, DITHERING_ATKINSON)
static const set_frame_func set_frame_lut[NB_DITHERING] = {
[DITHERING_NONE] = set_frame_none,
[DITHERING_BAYER] = set_frame_bayer,
[DITHERING_HECKBERT] = set_frame_heckbert,
[DITHERING_FLOYD_STEINBERG] = set_frame_floyd_steinberg,
[DITHERING_SIERRA2] = set_frame_sierra2,
[DITHERING_SIERRA2_4A] = set_frame_sierra2_4a,
[DITHERING_SIERRA3] = set_frame_sierra3,
[DITHERING_BURKES] = set_frame_burkes,
[DITHERING_ATKINSON] = set_frame_atkinson,
};
static int dither_value(int p)
{
const int q = p ^ (p >> 3);
return (p & 4) >> 2 | (q & 4) >> 1 \
| (p & 2) << 1 | (q & 2) << 2 \
| (p & 1) << 4 | (q & 1) << 5;
}
static av_cold int init(AVFilterContext *ctx)
{
PaletteUseContext *s = ctx->priv;
s->last_in = av_frame_alloc();
s->last_out = av_frame_alloc();
if (!s->last_in || !s->last_out)
return AVERROR(ENOMEM);
s->set_frame = set_frame_lut[s->dither];
if (s->dither == DITHERING_BAYER) {
const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
for (int i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
PaletteUseContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
PaletteUseContext *s = ctx->priv;
ff_framesync_uninit(&s->fs);
for (int i = 0; i < CACHE_SIZE; i++)
av_freep(&s->cache[i].entries);
av_frame_free(&s->last_in);
av_frame_free(&s->last_out);
}
static const AVFilterPad paletteuse_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},{
.name = "palette",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_palette,
},
};
static const AVFilterPad paletteuse_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_paletteuse = {
.name = "paletteuse",
.description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
.priv_size = sizeof(PaletteUseContext),
.init = init,
.uninit = uninit,
.activate = activate,
FILTER_INPUTS(paletteuse_inputs),
FILTER_OUTPUTS(paletteuse_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &paletteuse_class,
};