/* * Copyright (c) 2015 Stupeflix * Copyright (c) 2022 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Use a palette to downsample an input video stream. */ #include "libavutil/bprint.h" #include "libavutil/file_open.h" #include "libavutil/internal.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/qsort.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "framesync.h" #include "internal.h" #include "palette.h" #include "video.h" enum dithering_mode { DITHERING_NONE, DITHERING_BAYER, DITHERING_HECKBERT, DITHERING_FLOYD_STEINBERG, DITHERING_SIERRA2, DITHERING_SIERRA2_4A, DITHERING_SIERRA3, DITHERING_BURKES, DITHERING_ATKINSON, NB_DITHERING }; enum diff_mode { DIFF_MODE_NONE, DIFF_MODE_RECTANGLE, NB_DIFF_MODE }; struct color_info { uint32_t srgb; int32_t lab[3]; }; struct color_node { struct color_info c; uint8_t palette_id; int split; int left_id, right_id; }; #define CACHE_SIZE (1<<15) struct cached_color { uint32_t color; uint8_t pal_entry; }; struct cache_node { struct cached_color *entries; int nb_entries; }; struct PaletteUseContext; typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int width, int height); typedef struct PaletteUseContext { const AVClass *class; FFFrameSync fs; struct cache_node cache[CACHE_SIZE]; /* lookup cache */ struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */ uint32_t palette[AVPALETTE_COUNT]; int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */ int trans_thresh; int palette_loaded; int dither; int new; set_frame_func set_frame; int bayer_scale; int ordered_dither[8*8]; int diff_mode; AVFrame *last_in; AVFrame *last_out; /* debug options */ char *dot_filename; int calc_mean_err; uint64_t total_mean_err; } PaletteUseContext; #define OFFSET(x) offsetof(PaletteUseContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption paletteuse_options[] = { { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, .unit = "dithering_mode" }, { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "sierra3", "Frankie Sierra dithering v3 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA3}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "burkes", "Burkes dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BURKES}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "atkinson", "Atkinson dithering by Bill Atkinson at Apple Computer (error diffusion)",0, AV_OPT_TYPE_CONST, {.i64=DITHERING_ATKINSON}, INT_MIN, INT_MAX, FLAGS, .unit = "dithering_mode" }, { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS }, { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, .unit = "diff_mode" }, { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, .unit = "diff_mode" }, { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS }, /* following are the debug options, not part of the official API */ { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(paletteuse); static int load_apply_palette(FFFrameSync *fs); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE}; int ret; if ((ret = ff_formats_ref(ff_make_format_list(in_fmts), &ctx->inputs[0]->outcfg.formats)) < 0 || (ret = ff_formats_ref(ff_make_format_list(inpal_fmts), &ctx->inputs[1]->outcfg.formats)) < 0 || (ret = ff_formats_ref(ff_make_format_list(out_fmts), &ctx->outputs[0]->incfg.formats)) < 0) return ret; return 0; } static av_always_inline uint32_t dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift) { return (px & 0xff000000) | av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<> 8 & 0xff) + ((eg * scale) / (1<srgb >> 24; const uint8_t alpha_b = b->srgb >> 24; if (alpha_a < trans_thresh && alpha_b < trans_thresh) { return 0; } else if (alpha_a >= trans_thresh && alpha_b >= trans_thresh) { const int64_t dL = a->lab[0] - b->lab[0]; const int64_t da = a->lab[1] - b->lab[1]; const int64_t db = a->lab[2] - b->lab[2]; const int64_t ret = dL*dL + da*da + db*db; return FFMIN(ret, INT32_MAX - 1); } else { return INT32_MAX - 1; } } static struct color_info get_color_from_srgb(uint32_t srgb) { const struct Lab lab = ff_srgb_u8_to_oklab_int(srgb); struct color_info ret = {.srgb=srgb, .lab={lab.L, lab.a, lab.b}}; return ret; } struct nearest_color { int node_pos; int64_t dist_sqd; }; static void colormap_nearest_node(const struct color_node *map, const int node_pos, const struct color_info *target, const int trans_thresh, struct nearest_color *nearest) { const struct color_node *kd = map + node_pos; int nearer_kd_id, further_kd_id; const struct color_info *current = &kd->c; const int64_t current_to_target = diff(target, current, trans_thresh); if (current_to_target < nearest->dist_sqd) { nearest->node_pos = node_pos; nearest->dist_sqd = current_to_target; } if (kd->left_id != -1 || kd->right_id != -1) { const int64_t dx = target->lab[kd->split] - current->lab[kd->split]; if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id; else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id; if (nearer_kd_id != -1) colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest); if (further_kd_id != -1 && dx*dx < nearest->dist_sqd) colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest); } } static av_always_inline uint8_t colormap_nearest(const struct color_node *node, const struct color_info *target, const int trans_thresh) { struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1}; colormap_nearest_node(node, 0, target, trans_thresh, &res); return node[res.node_pos].palette_id; } struct stack_node { int color_id; int dx2; }; /** * Check if the requested color is in the cache already. If not, find it in the * color tree and cache it. */ static av_always_inline int color_get(PaletteUseContext *s, uint32_t color) { struct color_info clrinfo; const uint32_t hash = ff_lowbias32(color) & (CACHE_SIZE - 1); struct cache_node *node = &s->cache[hash]; struct cached_color *e; // first, check for transparency if (color>>24 < s->trans_thresh && s->transparency_index >= 0) { return s->transparency_index; } for (int i = 0; i < node->nb_entries; i++) { e = &node->entries[i]; if (e->color == color) return e->pal_entry; } e = av_dynarray2_add((void**)&node->entries, &node->nb_entries, sizeof(*node->entries), NULL); if (!e) return AVERROR(ENOMEM); e->color = color; clrinfo = get_color_from_srgb(color); e->pal_entry = colormap_nearest(s->map, &clrinfo, s->trans_thresh); return e->pal_entry; } static av_always_inline int get_dst_color_err(PaletteUseContext *s, uint32_t c, int *er, int *eg, int *eb) { uint32_t dstc; const int dstx = color_get(s, c); if (dstx < 0) return dstx; dstc = s->palette[dstx]; if (dstx == s->transparency_index) { *er = *eg = *eb = 0; } else { const uint8_t r = c >> 16 & 0xff; const uint8_t g = c >> 8 & 0xff; const uint8_t b = c & 0xff; *er = (int)r - (int)(dstc >> 16 & 0xff); *eg = (int)g - (int)(dstc >> 8 & 0xff); *eb = (int)b - (int)(dstc & 0xff); } return dstx; } static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int w, int h, enum dithering_mode dither) { const int src_linesize = in ->linesize[0] >> 2; const int dst_linesize = out->linesize[0]; uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize; uint8_t *dst = out->data[0] + y_start*dst_linesize; w += x_start; h += y_start; for (int y = y_start; y < h; y++) { for (int x = x_start; x < w; x++) { int er, eg, eb; if (dither == DITHERING_BAYER) { const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)]; const uint8_t a8 = src[x] >> 24; const uint8_t r8 = src[x] >> 16 & 0xff; const uint8_t g8 = src[x] >> 8 & 0xff; const uint8_t b8 = src[x] & 0xff; const uint8_t r = av_clip_uint8(r8 + d); const uint8_t g = av_clip_uint8(g8 + d); const uint8_t b = av_clip_uint8(b8 + d); const uint32_t color_new = (unsigned)(a8) << 24 | r << 16 | g << 8 | b; const int color = color_get(s, color_new); if (color < 0) return color; dst[x] = color; } else if (dither == DITHERING_HECKBERT) { const int right = x < w - 1, down = y < h - 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3); if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3); } else if (dither == DITHERING_FLOYD_STEINBERG) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4); if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4); if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4); } else if (dither == DITHERING_SIERRA2) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int right2 = x < w - 2, left2 = x > x_start + 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4); if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4); if (down) { if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4); if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4); if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4); if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4); if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4); } } else if (dither == DITHERING_SIERRA2_4A) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2); if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2); if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2); } else if (dither == DITHERING_SIERRA3) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int right2 = x < w - 2, down2 = y < h - 2, left2 = x > x_start + 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 5, 5); if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 5); if (down) { if (left2) src[src_linesize + x - 2] = dither_color(src[src_linesize + x - 2], er, eg, eb, 2, 5); if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 4, 5); if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 5); if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 4, 5); if (right2) src[src_linesize + x + 2] = dither_color(src[src_linesize + x + 2], er, eg, eb, 2, 5); if (down2) { if (left) src[src_linesize*2 + x - 1] = dither_color(src[src_linesize*2 + x - 1], er, eg, eb, 2, 5); if (1) src[src_linesize*2 + x ] = dither_color(src[src_linesize*2 + x ], er, eg, eb, 3, 5); if (right) src[src_linesize*2 + x + 1] = dither_color(src[src_linesize*2 + x + 1], er, eg, eb, 2, 5); } } } else if (dither == DITHERING_BURKES) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int right2 = x < w - 2, left2 = x > x_start + 1; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 8, 5); if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 4, 5); if (down) { if (left2) src[src_linesize + x - 2] = dither_color(src[src_linesize + x - 2], er, eg, eb, 2, 5); if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 4, 5); if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 8, 5); if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 4, 5); if (right2) src[src_linesize + x + 2] = dither_color(src[src_linesize + x + 2], er, eg, eb, 2, 5); } } else if (dither == DITHERING_ATKINSON) { const int right = x < w - 1, down = y < h - 1, left = x > x_start; const int right2 = x < w - 2, down2 = y < h - 2; const int color = get_dst_color_err(s, src[x], &er, &eg, &eb); if (color < 0) return color; dst[x] = color; if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 1, 3); if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 1, 3); if (down) { if (left) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 3); if (1) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 3); if (right) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 3); if (down2) src[src_linesize*2 + x ] = dither_color(src[src_linesize*2 + x ], er, eg, eb, 1, 3); } } else { const int color = color_get(s, src[x]); if (color < 0) return color; dst[x] = color; } } src += src_linesize; dst += dst_linesize; } return 0; } #define INDENT 4 static void disp_node(AVBPrint *buf, const struct color_node *map, int parent_id, int node_id, int depth) { const struct color_node *node = &map[node_id]; const uint32_t fontcolor = node->c.lab[0] > 0x7fff ? 0 : 0xffffff; const int lab_comp = node->split; av_bprintf(buf, "%*cnode%d [" "label=\"%c%d%c%d%c%d%c\" " "fillcolor=\"#%06"PRIX32"\" " "fontcolor=\"#%06"PRIX32"\"]\n", depth*INDENT, ' ', node->palette_id, "[ "[lab_comp], node->c.lab[0], "][ "[lab_comp], node->c.lab[1], " ]["[lab_comp], node->c.lab[2], " ]"[lab_comp], node->c.srgb & 0xffffff, fontcolor); if (parent_id != -1) av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ', map[parent_id].palette_id, node->palette_id); if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1); if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1); } // debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png static int disp_tree(const struct color_node *node, const char *fname) { AVBPrint buf; FILE *f = avpriv_fopen_utf8(fname, "w"); if (!f) { int ret = AVERROR(errno); av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n", fname, av_err2str(ret)); return ret; } av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED); av_bprintf(&buf, "digraph {\n"); av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n"); disp_node(&buf, node, -1, 0, 0); av_bprintf(&buf, "}\n"); fwrite(buf.str, 1, buf.len, f); fclose(f); av_bprint_finalize(&buf, NULL); return 0; } struct color { struct Lab value; uint8_t pal_id; }; struct color_rect { int32_t min[3]; int32_t max[3]; }; typedef int (*cmp_func)(const void *, const void *); #define DECLARE_CMP_FUNC(name) \ static int cmp_##name(const void *pa, const void *pb) \ { \ const struct color *a = pa; \ const struct color *b = pb; \ return FFDIFFSIGN(a->value.name, b->value.name); \ } DECLARE_CMP_FUNC(L) DECLARE_CMP_FUNC(a) DECLARE_CMP_FUNC(b) static const cmp_func cmp_funcs[] = {cmp_L, cmp_a, cmp_b}; static int get_next_color(const uint8_t *color_used, const uint32_t *palette, int *component, const struct color_rect *box) { int wL, wa, wb; int longest = 0; unsigned nb_color = 0; struct color_rect ranges; struct color tmp_pal[256]; cmp_func cmpf; ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xffff; ranges.max[0] = ranges.max[1] = ranges.max[2] = -0xffff; for (int i = 0; i < AVPALETTE_COUNT; i++) { const uint32_t c = palette[i]; const uint8_t a = c >> 24; const struct Lab lab = ff_srgb_u8_to_oklab_int(c); if (color_used[i] || (a != 0xff) || lab.L < box->min[0] || lab.a < box->min[1] || lab.b < box->min[2] || lab.L > box->max[0] || lab.a > box->max[1] || lab.b > box->max[2]) continue; if (lab.L < ranges.min[0]) ranges.min[0] = lab.L; if (lab.a < ranges.min[1]) ranges.min[1] = lab.a; if (lab.b < ranges.min[2]) ranges.min[2] = lab.b; if (lab.L > ranges.max[0]) ranges.max[0] = lab.L; if (lab.a > ranges.max[1]) ranges.max[1] = lab.a; if (lab.b > ranges.max[2]) ranges.max[2] = lab.b; tmp_pal[nb_color].value = lab; tmp_pal[nb_color].pal_id = i; nb_color++; } if (!nb_color) return -1; /* define longest axis that will be the split component */ wL = ranges.max[0] - ranges.min[0]; wa = ranges.max[1] - ranges.min[1]; wb = ranges.max[2] - ranges.min[2]; if (wb >= wL && wb >= wa) longest = 2; if (wa >= wL && wa >= wb) longest = 1; if (wL >= wa && wL >= wb) longest = 0; cmpf = cmp_funcs[longest]; *component = longest; /* sort along this axis to get median */ AV_QSORT(tmp_pal, nb_color, struct color, cmpf); return tmp_pal[nb_color >> 1].pal_id; } static int colormap_insert(struct color_node *map, uint8_t *color_used, int *nb_used, const uint32_t *palette, const int trans_thresh, const struct color_rect *box) { int component, cur_id; int comp_value; int node_left_id = -1, node_right_id = -1; struct color_node *node; struct color_rect box1, box2; const int pal_id = get_next_color(color_used, palette, &component, box); if (pal_id < 0) return -1; /* create new node with that color */ cur_id = (*nb_used)++; node = &map[cur_id]; node->split = component; node->palette_id = pal_id; node->c = get_color_from_srgb(palette[pal_id]); color_used[pal_id] = 1; /* get the two boxes this node creates */ box1 = box2 = *box; comp_value = node->c.lab[component]; box1.max[component] = comp_value; box2.min[component] = FFMIN(comp_value + 1, 0xffff); node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1); if (box2.min[component] <= box2.max[component]) node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2); node->left_id = node_left_id; node->right_id = node_right_id; return cur_id; } static int cmp_pal_entry(const void *a, const void *b) { const int c1 = *(const uint32_t *)a & 0xffffff; const int c2 = *(const uint32_t *)b & 0xffffff; return c1 - c2; } static void load_colormap(PaletteUseContext *s) { int nb_used = 0; uint8_t color_used[AVPALETTE_COUNT] = {0}; uint32_t last_color = 0; struct color_rect box; if (s->transparency_index >= 0) { FFSWAP(uint32_t, s->palette[s->transparency_index], s->palette[255]); } /* disable transparent colors and dups */ qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette), cmp_pal_entry); for (int i = 0; i < AVPALETTE_COUNT; i++) { const uint32_t c = s->palette[i]; if (i != 0 && c == last_color) { color_used[i] = 1; continue; } last_color = c; if (c >> 24 < s->trans_thresh) { color_used[i] = 1; // ignore transparent color(s) continue; } } box.min[0] = box.min[1] = box.min[2] = -0xffff; box.max[0] = box.max[1] = box.max[2] = 0xffff; colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box); if (s->dot_filename) disp_tree(s->map, s->dot_filename); } static void set_processing_window(enum diff_mode diff_mode, const AVFrame *prv_src, const AVFrame *cur_src, const AVFrame *prv_dst, AVFrame *cur_dst, int *xp, int *yp, int *wp, int *hp) { int x_start = 0, y_start = 0; int width = cur_src->width; int height = cur_src->height; if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) { int y; int x_end = cur_src->width - 1, y_end = cur_src->height - 1; const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0]; const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0]; const uint8_t *prv_dstp = prv_dst->data[0]; uint8_t *cur_dstp = cur_dst->data[0]; const int prv_src_linesize = prv_src->linesize[0] >> 2; const int cur_src_linesize = cur_src->linesize[0] >> 2; const int prv_dst_linesize = prv_dst->linesize[0]; const int cur_dst_linesize = cur_dst->linesize[0]; /* skip common lines */ while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize, cur_srcp + y_start*cur_src_linesize, cur_src->width * 4)) { memcpy(cur_dstp + y_start*cur_dst_linesize, prv_dstp + y_start*prv_dst_linesize, cur_dst->width); y_start++; } while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize, cur_srcp + y_end*cur_src_linesize, cur_src->width * 4)) { memcpy(cur_dstp + y_end*cur_dst_linesize, prv_dstp + y_end*prv_dst_linesize, cur_dst->width); y_end--; } height = y_end + 1 - y_start; /* skip common columns */ while (x_start < x_end) { int same_column = 1; for (y = y_start; y <= y_end; y++) { if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) { same_column = 0; break; } } if (!same_column) break; x_start++; } while (x_end > x_start) { int same_column = 1; for (y = y_start; y <= y_end; y++) { if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) { same_column = 0; break; } } if (!same_column) break; x_end--; } width = x_end + 1 - x_start; if (x_start) { for (y = y_start; y <= y_end; y++) memcpy(cur_dstp + y*cur_dst_linesize, prv_dstp + y*prv_dst_linesize, x_start); } if (x_end != cur_src->width - 1) { const int copy_len = cur_src->width - 1 - x_end; for (y = y_start; y <= y_end; y++) memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1, prv_dstp + y*prv_dst_linesize + x_end + 1, copy_len); } } *xp = x_start; *yp = y_start; *wp = width; *hp = height; } static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf) { int x, y, w, h, ret; AVFilterContext *ctx = inlink->dst; PaletteUseContext *s = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { *outf = NULL; return AVERROR(ENOMEM); } av_frame_copy_props(out, in); set_processing_window(s->diff_mode, s->last_in, in, s->last_out, out, &x, &y, &w, &h); av_frame_unref(s->last_out); if ((ret = av_frame_replace(s->last_in, in)) < 0 || (ret = av_frame_ref(s->last_out, out)) < 0 || (ret = ff_inlink_make_frame_writable(inlink, &s->last_in)) < 0) { av_frame_free(&out); *outf = NULL; return ret; } ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n", w, h, x, y, x+w, y+h, in->width, in->height); ret = s->set_frame(s, out, in, x, y, w, h); if (ret < 0) { av_frame_free(&out); *outf = NULL; return ret; } memcpy(out->data[1], s->palette, AVPALETTE_SIZE); *outf = out; return 0; } static int config_output(AVFilterLink *outlink) { int ret; AVFilterContext *ctx = outlink->src; PaletteUseContext *s = ctx->priv; ret = ff_framesync_init_dualinput(&s->fs, ctx); if (ret < 0) return ret; s->fs.opt_repeatlast = 1; // only 1 frame in the palette s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY; s->fs.on_event = load_apply_palette; outlink->w = ctx->inputs[0]->w; outlink->h = ctx->inputs[0]->h; outlink->time_base = ctx->inputs[0]->time_base; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; return 0; } static int config_input_palette(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; if (inlink->w * inlink->h != AVPALETTE_COUNT) { av_log(ctx, AV_LOG_ERROR, "Palette input must contain exactly %d pixels. " "Specified input has %dx%d=%d pixels\n", AVPALETTE_COUNT, inlink->w, inlink->h, inlink->w * inlink->h); return AVERROR(EINVAL); } return 0; } static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame) { int i, x, y; const uint32_t *p = (const uint32_t *)palette_frame->data[0]; const ptrdiff_t p_linesize = palette_frame->linesize[0] >> 2; s->transparency_index = -1; if (s->new) { memset(s->palette, 0, sizeof(s->palette)); memset(s->map, 0, sizeof(s->map)); for (i = 0; i < CACHE_SIZE; i++) av_freep(&s->cache[i].entries); memset(s->cache, 0, sizeof(s->cache)); } i = 0; for (y = 0; y < palette_frame->height; y++) { for (x = 0; x < palette_frame->width; x++) { s->palette[i] = p[x]; if (p[x]>>24 < s->trans_thresh) { s->transparency_index = i; // we are assuming at most one transparent color in palette } i++; } p += p_linesize; } load_colormap(s); if (!s->new) s->palette_loaded = 1; } static int load_apply_palette(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; AVFilterLink *inlink = ctx->inputs[0]; PaletteUseContext *s = ctx->priv; AVFrame *master, *second, *out = NULL; int ret; // writable for error diffusal dithering ret = ff_framesync_dualinput_get_writable(fs, &master, &second); if (ret < 0) return ret; if (!master || !second) { av_frame_free(&master); return AVERROR_BUG; } if (!s->palette_loaded) { load_palette(s, second); } ret = apply_palette(inlink, master, &out); av_frame_free(&master); if (ret < 0) return ret; return ff_filter_frame(ctx->outputs[0], out); } #define DEFINE_SET_FRAME(name, value) \ static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \ int x_start, int y_start, int w, int h) \ { \ return set_frame(s, out, in, x_start, y_start, w, h, value); \ } DEFINE_SET_FRAME(none, DITHERING_NONE) DEFINE_SET_FRAME(bayer, DITHERING_BAYER) DEFINE_SET_FRAME(heckbert, DITHERING_HECKBERT) DEFINE_SET_FRAME(floyd_steinberg, DITHERING_FLOYD_STEINBERG) DEFINE_SET_FRAME(sierra2, DITHERING_SIERRA2) DEFINE_SET_FRAME(sierra2_4a, DITHERING_SIERRA2_4A) DEFINE_SET_FRAME(sierra3, DITHERING_SIERRA3) DEFINE_SET_FRAME(burkes, DITHERING_BURKES) DEFINE_SET_FRAME(atkinson, DITHERING_ATKINSON) static const set_frame_func set_frame_lut[NB_DITHERING] = { [DITHERING_NONE] = set_frame_none, [DITHERING_BAYER] = set_frame_bayer, [DITHERING_HECKBERT] = set_frame_heckbert, [DITHERING_FLOYD_STEINBERG] = set_frame_floyd_steinberg, [DITHERING_SIERRA2] = set_frame_sierra2, [DITHERING_SIERRA2_4A] = set_frame_sierra2_4a, [DITHERING_SIERRA3] = set_frame_sierra3, [DITHERING_BURKES] = set_frame_burkes, [DITHERING_ATKINSON] = set_frame_atkinson, }; static int dither_value(int p) { const int q = p ^ (p >> 3); return (p & 4) >> 2 | (q & 4) >> 1 \ | (p & 2) << 1 | (q & 2) << 2 \ | (p & 1) << 4 | (q & 1) << 5; } static av_cold int init(AVFilterContext *ctx) { PaletteUseContext *s = ctx->priv; s->last_in = av_frame_alloc(); s->last_out = av_frame_alloc(); if (!s->last_in || !s->last_out) return AVERROR(ENOMEM); s->set_frame = set_frame_lut[s->dither]; if (s->dither == DITHERING_BAYER) { const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma for (int i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++) s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta; } return 0; } static int activate(AVFilterContext *ctx) { PaletteUseContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { PaletteUseContext *s = ctx->priv; ff_framesync_uninit(&s->fs); for (int i = 0; i < CACHE_SIZE; i++) av_freep(&s->cache[i].entries); av_frame_free(&s->last_in); av_frame_free(&s->last_out); } static const AVFilterPad paletteuse_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, },{ .name = "palette", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_palette, }, }; static const AVFilterPad paletteuse_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_paletteuse = { .name = "paletteuse", .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."), .priv_size = sizeof(PaletteUseContext), .init = init, .uninit = uninit, .activate = activate, FILTER_INPUTS(paletteuse_inputs), FILTER_OUTPUTS(paletteuse_outputs), FILTER_QUERY_FUNC(query_formats), .priv_class = &paletteuse_class, };