avfilter/vf_bilateral: add slice threading support

This commit is contained in:
Paul B Mahol 2021-10-22 11:01:23 +02:00
parent 444cf3fca8
commit 7d463be590
1 changed files with 293 additions and 164 deletions

View File

@ -36,6 +36,7 @@ typedef struct BilateralContext {
float sigmaR; float sigmaR;
int planes; int planes;
int nb_threads;
int nb_planes; int nb_planes;
int depth; int depth;
int planewidth[4]; int planewidth[4];
@ -44,14 +45,14 @@ typedef struct BilateralContext {
float alpha; float alpha;
float range_table[65536]; float range_table[65536];
float *img_out_f; float *img_out_f[4];
float *img_temp; float *img_temp[4];
float *map_factor_a; float *map_factor_a[4];
float *map_factor_b; float *map_factor_b[4];
float *slice_factor_a; float *slice_factor_a[4];
float *slice_factor_b; float *slice_factor_b[4];
float *line_factor_a; float *line_factor_a[4];
float *line_factor_b; float *line_factor_b[4];
} BilateralContext; } BilateralContext;
#define OFFSET(x) offsetof(BilateralContext, x) #define OFFSET(x) offsetof(BilateralContext, x)
@ -102,6 +103,10 @@ static int config_params(AVFilterContext *ctx)
return 0; return 0;
} }
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
static int config_input(AVFilterLink *inlink) static int config_input(AVFilterLink *inlink)
{ {
AVFilterContext *ctx = inlink->dst; AVFilterContext *ctx = inlink->dst;
@ -109,7 +114,6 @@ static int config_input(AVFilterLink *inlink)
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth; s->depth = desc->comp[0].depth;
config_params(ctx); config_params(ctx);
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
@ -118,133 +122,169 @@ static int config_input(AVFilterLink *inlink)
s->planeheight[0] = s->planeheight[3] = inlink->h; s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = ff_filter_get_nb_threads(ctx);
s->img_out_f = av_calloc(inlink->w * inlink->h, sizeof(float)); for (int p = 0; p < s->nb_planes; p++) {
s->img_temp = av_calloc(inlink->w * inlink->h, sizeof(float)); const int w = s->planewidth[p];
s->map_factor_a = av_calloc(inlink->w * inlink->h, sizeof(float)); const int h = s->planeheight[p];
s->map_factor_b = av_calloc(inlink->w * inlink->h, sizeof(float));
s->slice_factor_a = av_calloc(inlink->w, sizeof(float));
s->slice_factor_b = av_calloc(inlink->w, sizeof(float));
s->line_factor_a = av_calloc(inlink->w, sizeof(float));
s->line_factor_b = av_calloc(inlink->w, sizeof(float));
if (!s->img_out_f || s->img_out_f[p] = av_calloc(w * h, sizeof(float));
!s->img_temp || s->img_temp[p] = av_calloc(w * h, sizeof(float));
!s->map_factor_a || s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
!s->map_factor_b || s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
!s->slice_factor_a || s->slice_factor_a[p] = av_calloc(w, sizeof(float));
!s->slice_factor_a || s->slice_factor_b[p] = av_calloc(w, sizeof(float));
!s->line_factor_a || s->line_factor_a[p] = av_calloc(w, sizeof(float));
!s->line_factor_a) s->line_factor_b[p] = av_calloc(w, sizeof(float));
return AVERROR(ENOMEM);
if (!s->img_out_f[p] ||
!s->img_temp[p] ||
!s->map_factor_a[p] ||
!s->map_factor_b[p] ||
!s->slice_factor_a[p] ||
!s->slice_factor_a[p] ||
!s->line_factor_a[p] ||
!s->line_factor_a[p])
return AVERROR(ENOMEM);
}
return 0; return 0;
} }
#define BILATERAL(type, name) \ #define BILATERAL_H(type, name) \
static void bilateral_##name(BilateralContext *s, const uint8_t *ssrc, uint8_t *ddst, \ static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int width, int height, int src_linesize, int dst_linesize) \ int jobnr, int nb_jobs, int plane) \
{ \ { \
type *dst = (type *)ddst; \ const int width = s->planewidth[plane]; \
const type *src = (const type *)ssrc; \ const int height = s->planeheight[plane]; \
float *img_out_f = s->img_out_f, *img_temp = s->img_temp; \ const int slice_start = (height * jobnr) / nb_jobs; \
float *map_factor_a = s->map_factor_a, *map_factor_b = s->map_factor_b; \ const int slice_end = (height * (jobnr+1)) / nb_jobs; \
float *slice_factor_a = s->slice_factor_a, *slice_factor_b = s->slice_factor_b; \ const int src_linesize = in->linesize[plane] / sizeof(type); \
float *line_factor_a = s->line_factor_a, *line_factor_b = s->line_factor_b; \ const type *src = (const type *)in->data[plane]; \
const float *range_table = s->range_table; \ float *img_temp = s->img_temp[plane]; \
const float alpha = s->alpha; \ float *map_factor_a = s->map_factor_a[plane]; \
float ypr, ycr, *ycy, *ypy, *xcy, fp, fc; \ const float *const range_table = s->range_table; \
const float inv_alpha_ = 1.f - alpha; \ const float alpha = s->alpha; \
float *ycf, *ypf, *xcf, *in_factor; \ float ypr, ycr, fp, fc; \
const type *tcy, *tpy; \ const float inv_alpha_ = 1.f - alpha; \
int h1; \ \
\ for (int y = slice_start; y < slice_end; y++) { \
for (int y = 0; y < height; y++) { \ float *temp_factor_x, *temp_x = &img_temp[y * width]; \
float *temp_factor_x, *temp_x = &img_temp[y * width]; \ const type *in_x = &src[y * src_linesize]; \
const type *in_x = &src[y * src_linesize]; \ const type *texture_x = &src[y * src_linesize]; \
const type *texture_x = &src[y * src_linesize]; \ type tpr; \
type tpr; \ \
\ *temp_x++ = ypr = *in_x++; \
*temp_x++ = ypr = *in_x++; \ tpr = *texture_x++; \
tpr = *texture_x++; \ \
\ temp_factor_x = &map_factor_a[y * width]; \
temp_factor_x = &map_factor_a[y * width]; \ *temp_factor_x++ = fp = 1; \
*temp_factor_x++ = fp = 1; \ \
\ for (int x = 1; x < width; x++) { \
for (int x = 1; x < width; x++) { \ float alpha_; \
float alpha_; \ int range_dist; \
int range_dist; \ type tcr = *texture_x++; \
type tcr = *texture_x++; \ type dr = abs(tcr - tpr); \
type dr = abs(tcr - tpr); \ \
\ range_dist = dr; \
range_dist = dr; \ alpha_ = range_table[range_dist]; \
alpha_ = range_table[range_dist]; \ *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
*temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \ tpr = tcr; \
tpr = tcr; \ ypr = ycr; \
ypr = ycr; \ *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
*temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \ fp = fc; \
fp = fc; \ } \
} \ --temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
--temp_x; *temp_x = ((*temp_x) + (*--in_x)); \ tpr = *--texture_x; \
tpr = *--texture_x; \ ypr = *in_x; \
ypr = *in_x; \ \
\ --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
--temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \ fp = 1; \
fp = 1; \ \
\ for (int x = width - 2; x >= 0; x--) { \
for (int x = width - 2; x >= 0; x--) { \ type tcr = *--texture_x; \
type tcr = *--texture_x; \ type dr = abs(tcr - tpr); \
type dr = abs(tcr - tpr); \ int range_dist = dr; \
int range_dist = dr; \ float alpha_ = range_table[range_dist]; \
float alpha_ = range_table[range_dist]; \ \
\ ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \ --temp_x; *temp_x = ((*temp_x) + ycr); \
--temp_x; *temp_x = ((*temp_x) + ycr); \ tpr = tcr; \
tpr = tcr; \ ypr = ycr; \
ypr = ycr; \ \
\ fc = inv_alpha_ + alpha_*fp; \
fc = inv_alpha_ + alpha_*fp; \ --temp_factor_x; \
--temp_factor_x; \ *temp_factor_x = ((*temp_factor_x) + fc); \
*temp_factor_x = ((*temp_factor_x) + fc); \ fp = fc; \
fp = fc; \ } \
} \ } \
} \ }
memcpy(img_out_f, img_temp, sizeof(float) * width); \
\ BILATERAL_H(uint8_t, byte)
in_factor = map_factor_a; \ BILATERAL_H(uint16_t, word)
memcpy(map_factor_b, in_factor, sizeof(float) * width); \
for (int y = 1; y < height; y++) { \ #define BILATERAL_V(type, name) \
tpy = &src[(y - 1) * src_linesize]; \ static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
tcy = &src[y * src_linesize]; \ int jobnr, int nb_jobs, int plane) \
xcy = &img_temp[y * width]; \ { \
ypy = &img_out_f[(y - 1) * width]; \ const int width = s->planewidth[plane]; \
ycy = &img_out_f[y * width]; \ const int height = s->planeheight[plane]; \
\ const int slice_start = (width * jobnr) / nb_jobs; \
xcf = &in_factor[y * width]; \ const int slice_end = (width * (jobnr+1)) / nb_jobs; \
ypf = &map_factor_b[(y - 1) * width]; \ const int src_linesize = in->linesize[plane] / sizeof(type); \
ycf = &map_factor_b[y * width]; \ const type *src = (const type *)in->data[plane] + slice_start; \
for (int x = 0; x < width; x++) { \ float *img_out_f = s->img_out_f[plane] + slice_start; \
type dr = abs((*tcy++) - (*tpy++)); \ float *img_temp = s->img_temp[plane] + slice_start; \
int range_dist = dr; \ float *map_factor_a = s->map_factor_a[plane] + slice_start; \
float alpha_ = range_table[range_dist]; \ float *map_factor_b = s->map_factor_b[plane] + slice_start; \
\ float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
*ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \ float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
*ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \ float *line_factor_a = s->line_factor_a[plane] + slice_start; \
} \ float *line_factor_b = s->line_factor_b[plane] + slice_start; \
} \ const float *const range_table = s->range_table; \
h1 = height - 1; \ const float alpha = s->alpha; \
ycf = line_factor_a; \ float *ycy, *ypy, *xcy; \
ypf = line_factor_b; \ const float inv_alpha_ = 1.f - alpha; \
memcpy(ypf, &in_factor[h1 * width], sizeof(float) * width); \ float *ycf, *ypf, *xcf, *in_factor; \
for (int x = 0; x < width; x++) \ const type *tcy, *tpy; \
map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[x]); \ int h1; \
\ \
ycy = slice_factor_a; \ memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
ypy = slice_factor_b; \ \
memcpy(ypy, &img_temp[h1 * width], sizeof(float) * width); \ in_factor = map_factor_a; \
for (int x = 0, k = 0; x < width; x++) { \ memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
int idx = h1 * width + x; \ for (int y = 1; y < height; y++) { \
img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \ tpy = &src[(y - 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ypy = &img_out_f[(y - 1) * width]; \
ycy = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ypf = &map_factor_b[(y - 1) * width]; \
ycf = &map_factor_b[y * width]; \
for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
*ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
*ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
} \
} \
h1 = height - 1; \
ycf = line_factor_a; \
ypf = line_factor_b; \
memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
\
ycy = slice_factor_a; \
ypy = slice_factor_b; \
memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
int idx = h1 * width + x; \
img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
} \ } \
\ \
for (int y = h1 - 1; y >= 0; y--) { \ for (int y = h1 - 1; y >= 0; y--) { \
@ -262,7 +302,7 @@ static void bilateral_##name(BilateralContext *s, const uint8_t *ssrc, uint8_t *
ycf_ = ycf; \ ycf_ = ycf; \
ypf_ = ypf; \ ypf_ = ypf; \
factor_ = &map_factor_b[y * width]; \ factor_ = &map_factor_b[y * width]; \
for (int x = 0; x < width; x++) { \ for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \ type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \ int range_dist = dr; \
float alpha_ = range_table[range_dist]; \ float alpha_ = range_table[range_dist]; \
@ -281,20 +321,119 @@ static void bilateral_##name(BilateralContext *s, const uint8_t *ssrc, uint8_t *
ypy = ycy; \ ypy = ycy; \
ypf = ycf; \ ypf = ycf; \
} \ } \
\
for (int i = 0; i < height; i++) \
for (int j = 0; j < width; j++) \
dst[j + i * dst_linesize] = lrintf(img_out_f[i * width + j]); \
} }
BILATERAL(uint8_t, byte) BILATERAL_V(uint8_t, byte)
BILATERAL(uint16_t, word) BILATERAL_V(uint16_t, word)
#define BILATERAL_O(type, name) \
static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
const int dst_linesize = out->linesize[plane] / sizeof(type); \
\
for (int i = slice_start; i < slice_end; i++) { \
type *dst = (type *)out->data[plane] + i * dst_linesize; \
const float *const img_out_f = s->img_out_f[plane] + i * width; \
for (int j = 0; j < width; j++) \
dst[j] = lrintf(img_out_f[j]); \
} \
}
BILATERAL_O(uint8_t, byte)
BILATERAL_O(uint16_t, word)
static int bilateralh_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralv_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralo_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane))) {
if (out != in) {
const int height = s->planeheight[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
const int width = s->planewidth[plane];
const int linesize = in->linesize[plane];
const int dst_linesize = out->linesize[plane];
const uint8_t *src = in->data[plane];
uint8_t *dst = out->data[plane];
av_image_copy_plane(dst + slice_start * dst_linesize,
dst_linesize,
src + slice_start * linesize,
linesize,
width * ((s->depth + 7) / 8),
slice_end - slice_start);
}
continue;
}
if (s->depth <= 8)
bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in) static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{ {
AVFilterContext *ctx = inlink->dst; AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv; BilateralContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0]; AVFilterLink *outlink = ctx->outputs[0];
ThreadData td;
AVFrame *out; AVFrame *out;
if (av_frame_is_writable(in)) { if (av_frame_is_writable(in)) {
@ -308,24 +447,11 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
av_frame_copy_props(out, in); av_frame_copy_props(out, in);
} }
for (int plane = 0; plane < s->nb_planes; plane++) { td.in = in;
if (!(s->planes & (1 << plane))) { td.out = out;
if (out != in) ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
av_image_copy_plane(out->data[plane], out->linesize[plane], ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
in->data[plane], in->linesize[plane], ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
s->planewidth[plane] * ((s->depth + 7) / 8), s->planeheight[plane]);
continue;
}
if (s->depth <= 8)
bilateral_byte(s, in->data[plane], out->data[plane],
s->planewidth[plane], s->planeheight[plane],
in->linesize[plane], out->linesize[plane]);
else
bilateral_word(s, in->data[plane], out->data[plane],
s->planewidth[plane], s->planeheight[plane],
in->linesize[plane] / 2, out->linesize[plane] / 2);
}
if (out != in) if (out != in)
av_frame_free(&in); av_frame_free(&in);
@ -336,14 +462,16 @@ static av_cold void uninit(AVFilterContext *ctx)
{ {
BilateralContext *s = ctx->priv; BilateralContext *s = ctx->priv;
av_freep(&s->img_out_f); for (int p = 0; p < s->nb_planes; p++) {
av_freep(&s->img_temp); av_freep(&s->img_out_f[p]);
av_freep(&s->map_factor_a); av_freep(&s->img_temp[p]);
av_freep(&s->map_factor_b); av_freep(&s->map_factor_a[p]);
av_freep(&s->slice_factor_a); av_freep(&s->map_factor_b[p]);
av_freep(&s->slice_factor_b); av_freep(&s->slice_factor_a[p]);
av_freep(&s->line_factor_a); av_freep(&s->slice_factor_b[p]);
av_freep(&s->line_factor_b); av_freep(&s->line_factor_a[p]);
av_freep(&s->line_factor_b[p]);
}
} }
static int process_command(AVFilterContext *ctx, static int process_command(AVFilterContext *ctx,
@ -386,6 +514,7 @@ const AVFilter ff_vf_bilateral = {
FILTER_INPUTS(bilateral_inputs), FILTER_INPUTS(bilateral_inputs),
FILTER_OUTPUTS(bilateral_outputs), FILTER_OUTPUTS(bilateral_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts), FILTER_PIXFMTS_ARRAY(pix_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command, .process_command = process_command,
}; };