ffmpeg/libavcodec/aacenc.c
Andreas Rheinhardt 49bf94536f avcodec/mpeg4audio: Unavpriv and deduplicate mpeg4audio_sample_rates
avpriv_mpeg4audio_sample_rates has a size of 64B and it is currently
avpriv; a clone of it exists in aacenctab.h and from there it is inlined
in aacenc.c (which also uses the avpriv version) and in the FLV muxer.
This means that despite it being avpriv both libavformat as well as
libavcodec have copies already.

This situation is clearly suboptimal. Given the overhead of exporting
symbols (for x64 Elf/Linux/GNU: 2x2B version, 2x24B .dynsym, 24B .rela.dyn,
8B .got, 4B hash + twice the size of the name (here 31B)) the object is
unavprived, i.e. duplicated into libavformat when creating a shared
build; but the duplicates in the AAC encoder and FLV muxer are removed.

This involves splitting of the sample rate table into a file of its own;
this allowed to break some spurious dependencies (e.g. both the AAC
encoder as well as the Matroska demuxer actually don't need the
mpeg4audio_get_config stuff).

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-01-04 13:16:50 +01:00

1153 lines
43 KiB
C

/*
* AAC encoder
* Copyright (C) 2008 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder
*/
/***********************************
* TODOs:
* add sane pulse detection
***********************************/
#include <float.h>
#include "libavutil/channel_layout.h"
#include "libavutil/libm.h"
#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "encode.h"
#include "put_bits.h"
#include "internal.h"
#include "mpeg4audio.h"
#include "sinewin.h"
#include "profiles.h"
#include "aac.h"
#include "aactab.h"
#include "aacenc.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
#include "psymodel.h"
static void put_pce(PutBitContext *pb, AVCodecContext *avctx)
{
int i, j;
AACEncContext *s = avctx->priv_data;
AACPCEInfo *pce = &s->pce;
const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
put_bits(pb, 4, 0);
put_bits(pb, 2, avctx->profile);
put_bits(pb, 4, s->samplerate_index);
put_bits(pb, 4, pce->num_ele[0]); /* Front */
put_bits(pb, 4, pce->num_ele[1]); /* Side */
put_bits(pb, 4, pce->num_ele[2]); /* Back */
put_bits(pb, 2, pce->num_ele[3]); /* LFE */
put_bits(pb, 3, 0); /* Assoc data */
put_bits(pb, 4, 0); /* CCs */
put_bits(pb, 1, 0); /* Stereo mixdown */
put_bits(pb, 1, 0); /* Mono mixdown */
put_bits(pb, 1, 0); /* Something else */
for (i = 0; i < 4; i++) {
for (j = 0; j < pce->num_ele[i]; j++) {
if (i < 3)
put_bits(pb, 1, pce->pairing[i][j]);
put_bits(pb, 4, pce->index[i][j]);
}
}
align_put_bits(pb);
put_bits(pb, 8, strlen(aux_data));
ff_put_string(pb, aux_data, 0);
}
/**
* Make AAC audio config object.
* @see 1.6.2.1 "Syntax - AudioSpecificConfig"
*/
static int put_audio_specific_config(AVCodecContext *avctx)
{
PutBitContext pb;
AACEncContext *s = avctx->priv_data;
int channels = (!s->needs_pce)*(s->channels - (s->channels == 8 ? 1 : 0));
const int max_size = 32;
avctx->extradata = av_mallocz(max_size);
if (!avctx->extradata)
return AVERROR(ENOMEM);
init_put_bits(&pb, avctx->extradata, max_size);
put_bits(&pb, 5, s->profile+1); //profile
put_bits(&pb, 4, s->samplerate_index); //sample rate index
put_bits(&pb, 4, channels);
//GASpecificConfig
put_bits(&pb, 1, 0); //frame length - 1024 samples
put_bits(&pb, 1, 0); //does not depend on core coder
put_bits(&pb, 1, 0); //is not extension
if (s->needs_pce)
put_pce(&pb, avctx);
//Explicitly Mark SBR absent
put_bits(&pb, 11, 0x2b7); //sync extension
put_bits(&pb, 5, AOT_SBR);
put_bits(&pb, 1, 0);
flush_put_bits(&pb);
avctx->extradata_size = put_bytes_output(&pb);
return 0;
}
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
{
++s->quantize_band_cost_cache_generation;
if (s->quantize_band_cost_cache_generation == 0) {
memset(s->quantize_band_cost_cache, 0, sizeof(s->quantize_band_cost_cache));
s->quantize_band_cost_cache_generation = 1;
}
}
#define WINDOW_FUNC(type) \
static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
SingleChannelElement *sce, \
const float *audio)
WINDOW_FUNC(only_long)
{
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
float *out = sce->ret_buf;
fdsp->vector_fmul (out, audio, lwindow, 1024);
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
}
WINDOW_FUNC(long_start)
{
const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
float *out = sce->ret_buf;
fdsp->vector_fmul(out, audio, lwindow, 1024);
memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
}
WINDOW_FUNC(long_stop)
{
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
float *out = sce->ret_buf;
memset(out, 0, sizeof(out[0]) * 448);
fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
}
WINDOW_FUNC(eight_short)
{
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *in = audio + 448;
float *out = sce->ret_buf;
int w;
for (w = 0; w < 8; w++) {
fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
out += 128;
in += 128;
fdsp->vector_fmul_reverse(out, in, swindow, 128);
out += 128;
}
}
static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
SingleChannelElement *sce,
const float *audio) = {
[ONLY_LONG_SEQUENCE] = apply_only_long_window,
[LONG_START_SEQUENCE] = apply_long_start_window,
[EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
[LONG_STOP_SEQUENCE] = apply_long_stop_window
};
static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
float *audio)
{
int i;
const float *output = sce->ret_buf;
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
else
for (i = 0; i < 1024; i += 128)
s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
}
/**
* Encode ics_info element.
* @see Table 4.6 (syntax of ics_info)
*/
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
{
int w;
put_bits(&s->pb, 1, 0); // ics_reserved bit
put_bits(&s->pb, 2, info->window_sequence[0]);
put_bits(&s->pb, 1, info->use_kb_window[0]);
if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
put_bits(&s->pb, 6, info->max_sfb);
put_bits(&s->pb, 1, !!info->predictor_present);
} else {
put_bits(&s->pb, 4, info->max_sfb);
for (w = 1; w < 8; w++)
put_bits(&s->pb, 1, !info->group_len[w]);
}
}
/**
* Encode MS data.
* @see 4.6.8.1 "Joint Coding - M/S Stereo"
*/
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
{
int i, w;
put_bits(pb, 2, cpe->ms_mode);
if (cpe->ms_mode == 1)
for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
}
/**
* Produce integer coefficients from scalefactors provided by the model.
*/
static void adjust_frame_information(ChannelElement *cpe, int chans)
{
int i, w, w2, g, ch;
int maxsfb, cmaxsfb;
for (ch = 0; ch < chans; ch++) {
IndividualChannelStream *ics = &cpe->ch[ch].ics;
maxsfb = 0;
cpe->ch[ch].pulse.num_pulse = 0;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
;
maxsfb = FFMAX(maxsfb, cmaxsfb);
}
}
ics->max_sfb = maxsfb;
//adjust zero bands for window groups
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (g = 0; g < ics->max_sfb; g++) {
i = 1;
for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
if (!cpe->ch[ch].zeroes[w2*16 + g]) {
i = 0;
break;
}
}
cpe->ch[ch].zeroes[w*16 + g] = i;
}
}
}
if (chans > 1 && cpe->common_window) {
IndividualChannelStream *ics0 = &cpe->ch[0].ics;
IndividualChannelStream *ics1 = &cpe->ch[1].ics;
int msc = 0;
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
ics1->max_sfb = ics0->max_sfb;
for (w = 0; w < ics0->num_windows*16; w += 16)
for (i = 0; i < ics0->max_sfb; i++)
if (cpe->ms_mask[w+i])
msc++;
if (msc == 0 || ics0->max_sfb == 0)
cpe->ms_mode = 0;
else
cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
}
}
static void apply_intensity_stereo(ChannelElement *cpe)
{
int w, w2, g, i;
IndividualChannelStream *ics = &cpe->ch[0].ics;
if (!cpe->common_window)
return;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
int start = (w+w2) * 128;
for (g = 0; g < ics->num_swb; g++) {
int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
float scale = cpe->ch[0].is_ener[w*16+g];
if (!cpe->is_mask[w*16 + g]) {
start += ics->swb_sizes[g];
continue;
}
if (cpe->ms_mask[w*16 + g])
p *= -1;
for (i = 0; i < ics->swb_sizes[g]; i++) {
float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
cpe->ch[0].coeffs[start+i] = sum;
cpe->ch[1].coeffs[start+i] = 0.0f;
}
start += ics->swb_sizes[g];
}
}
}
}
static void apply_mid_side_stereo(ChannelElement *cpe)
{
int w, w2, g, i;
IndividualChannelStream *ics = &cpe->ch[0].ics;
if (!cpe->common_window)
return;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
int start = (w+w2) * 128;
for (g = 0; g < ics->num_swb; g++) {
/* ms_mask can be used for other purposes in PNS and I/S,
* so must not apply M/S if any band uses either, even if
* ms_mask is set.
*/
if (!cpe->ms_mask[w*16 + g] || cpe->is_mask[w*16 + g]
|| cpe->ch[0].band_type[w*16 + g] >= NOISE_BT
|| cpe->ch[1].band_type[w*16 + g] >= NOISE_BT) {
start += ics->swb_sizes[g];
continue;
}
for (i = 0; i < ics->swb_sizes[g]; i++) {
float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
float R = L - cpe->ch[1].coeffs[start+i];
cpe->ch[0].coeffs[start+i] = L;
cpe->ch[1].coeffs[start+i] = R;
}
start += ics->swb_sizes[g];
}
}
}
}
/**
* Encode scalefactor band coding type.
*/
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
{
int w;
if (s->coder->set_special_band_scalefactors)
s->coder->set_special_band_scalefactors(s, sce);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
}
/**
* Encode scalefactors.
*/
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce)
{
int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
int off_is = 0, noise_flag = 1;
int i, w;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (i = 0; i < sce->ics.max_sfb; i++) {
if (!sce->zeroes[w*16 + i]) {
if (sce->band_type[w*16 + i] == NOISE_BT) {
diff = sce->sf_idx[w*16 + i] - off_pns;
off_pns = sce->sf_idx[w*16 + i];
if (noise_flag-- > 0) {
put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
continue;
}
} else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
sce->band_type[w*16 + i] == INTENSITY_BT2) {
diff = sce->sf_idx[w*16 + i] - off_is;
off_is = sce->sf_idx[w*16 + i];
} else {
diff = sce->sf_idx[w*16 + i] - off_sf;
off_sf = sce->sf_idx[w*16 + i];
}
diff += SCALE_DIFF_ZERO;
av_assert0(diff >= 0 && diff <= 120);
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
}
}
}
}
/**
* Encode pulse data.
*/
static void encode_pulses(AACEncContext *s, Pulse *pulse)
{
int i;
put_bits(&s->pb, 1, !!pulse->num_pulse);
if (!pulse->num_pulse)
return;
put_bits(&s->pb, 2, pulse->num_pulse - 1);
put_bits(&s->pb, 6, pulse->start);
for (i = 0; i < pulse->num_pulse; i++) {
put_bits(&s->pb, 5, pulse->pos[i]);
put_bits(&s->pb, 4, pulse->amp[i]);
}
}
/**
* Encode spectral coefficients processed by psychoacoustic model.
*/
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
{
int start, i, w, w2;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (i = 0; i < sce->ics.max_sfb; i++) {
if (sce->zeroes[w*16 + i]) {
start += sce->ics.swb_sizes[i];
continue;
}
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
s->coder->quantize_and_encode_band(s, &s->pb,
&sce->coeffs[start + w2*128],
NULL, sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda,
sce->ics.window_clipping[w]);
}
start += sce->ics.swb_sizes[i];
}
}
}
/**
* Downscale spectral coefficients for near-clipping windows to avoid artifacts
*/
static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
{
int start, i, j, w;
if (sce->ics.clip_avoidance_factor < 1.0f) {
for (w = 0; w < sce->ics.num_windows; w++) {
start = 0;
for (i = 0; i < sce->ics.max_sfb; i++) {
float *swb_coeffs = &sce->coeffs[start + w*128];
for (j = 0; j < sce->ics.swb_sizes[i]; j++)
swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
start += sce->ics.swb_sizes[i];
}
}
}
}
/**
* Encode one channel of audio data.
*/
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
int common_window)
{
put_bits(&s->pb, 8, sce->sf_idx[0]);
if (!common_window) {
put_ics_info(s, &sce->ics);
if (s->coder->encode_main_pred)
s->coder->encode_main_pred(s, sce);
if (s->coder->encode_ltp_info)
s->coder->encode_ltp_info(s, sce, 0);
}
encode_band_info(s, sce);
encode_scale_factors(avctx, s, sce);
encode_pulses(s, &sce->pulse);
put_bits(&s->pb, 1, !!sce->tns.present);
if (s->coder->encode_tns_info)
s->coder->encode_tns_info(s, sce);
put_bits(&s->pb, 1, 0); //ssr
encode_spectral_coeffs(s, sce);
return 0;
}
/**
* Write some auxiliary information about the created AAC file.
*/
static void put_bitstream_info(AACEncContext *s, const char *name)
{
int i, namelen, padbits;
namelen = strlen(name) + 2;
put_bits(&s->pb, 3, TYPE_FIL);
put_bits(&s->pb, 4, FFMIN(namelen, 15));
if (namelen >= 15)
put_bits(&s->pb, 8, namelen - 14);
put_bits(&s->pb, 4, 0); //extension type - filler
padbits = -put_bits_count(&s->pb) & 7;
align_put_bits(&s->pb);
for (i = 0; i < namelen - 2; i++)
put_bits(&s->pb, 8, name[i]);
put_bits(&s->pb, 12 - padbits, 0);
}
/*
* Copy input samples.
* Channels are reordered from libavcodec's default order to AAC order.
*/
static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
{
int ch;
int end = 2048 + (frame ? frame->nb_samples : 0);
const uint8_t *channel_map = s->reorder_map;
/* copy and remap input samples */
for (ch = 0; ch < s->channels; ch++) {
/* copy last 1024 samples of previous frame to the start of the current frame */
memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
/* copy new samples and zero any remaining samples */
if (frame) {
memcpy(&s->planar_samples[ch][2048],
frame->extended_data[channel_map[ch]],
frame->nb_samples * sizeof(s->planar_samples[0][0]));
}
memset(&s->planar_samples[ch][end], 0,
(3072 - end) * sizeof(s->planar_samples[0][0]));
}
}
static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AACEncContext *s = avctx->priv_data;
float **samples = s->planar_samples, *samples2, *la, *overlap;
ChannelElement *cpe;
SingleChannelElement *sce;
IndividualChannelStream *ics;
int i, its, ch, w, chans, tag, start_ch, ret, frame_bits;
int target_bits, rate_bits, too_many_bits, too_few_bits;
int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
int chan_el_counter[4];
FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
/* add current frame to queue */
if (frame) {
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
return ret;
} else {
if (!s->afq.remaining_samples || (!s->afq.frame_alloc && !s->afq.frame_count))
return 0;
}
copy_input_samples(s, frame);
if (s->psypp)
ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
if (!avctx->frame_number)
return 0;
start_ch = 0;
for (i = 0; i < s->chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
tag = s->chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
for (ch = 0; ch < chans; ch++) {
int k;
float clip_avoidance_factor;
sce = &cpe->ch[ch];
ics = &sce->ics;
s->cur_channel = start_ch + ch;
overlap = &samples[s->cur_channel][0];
samples2 = overlap + 1024;
la = samples2 + (448+64);
if (!frame)
la = NULL;
if (tag == TYPE_LFE) {
wi[ch].window_type[0] = wi[ch].window_type[1] = ONLY_LONG_SEQUENCE;
wi[ch].window_shape = 0;
wi[ch].num_windows = 1;
wi[ch].grouping[0] = 1;
wi[ch].clipping[0] = 0;
/* Only the lowest 12 coefficients are used in a LFE channel.
* The expression below results in only the bottom 8 coefficients
* being used for 11.025kHz to 16kHz sample rates.
*/
ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
} else {
wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel,
ics->window_sequence[0]);
}
ics->window_sequence[1] = ics->window_sequence[0];
ics->window_sequence[0] = wi[ch].window_type[0];
ics->use_kb_window[1] = ics->use_kb_window[0];
ics->use_kb_window[0] = wi[ch].window_shape;
ics->num_windows = wi[ch].num_windows;
ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
ics->max_sfb = FFMIN(ics->max_sfb, ics->num_swb);
ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
ff_swb_offset_128 [s->samplerate_index]:
ff_swb_offset_1024[s->samplerate_index];
ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
ff_tns_max_bands_128 [s->samplerate_index]:
ff_tns_max_bands_1024[s->samplerate_index];
for (w = 0; w < ics->num_windows; w++)
ics->group_len[w] = wi[ch].grouping[w];
/* Calculate input sample maximums and evaluate clipping risk */
clip_avoidance_factor = 0.0f;
for (w = 0; w < ics->num_windows; w++) {
const float *wbuf = overlap + w * 128;
const int wlen = 2048 / ics->num_windows;
float max = 0;
int j;
/* mdct input is 2 * output */
for (j = 0; j < wlen; j++)
max = FFMAX(max, fabsf(wbuf[j]));
wi[ch].clipping[w] = max;
}
for (w = 0; w < ics->num_windows; w++) {
if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
ics->window_clipping[w] = 1;
clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
} else {
ics->window_clipping[w] = 0;
}
}
if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
} else {
ics->clip_avoidance_factor = 1.0f;
}
apply_window_and_mdct(s, sce, overlap);
if (s->options.ltp && s->coder->update_ltp) {
s->coder->update_ltp(s, sce);
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]);
s->mdct1024.mdct_calc(&s->mdct1024, sce->lcoeffs, sce->ret_buf);
}
for (k = 0; k < 1024; k++) {
if (!(fabs(cpe->ch[ch].coeffs[k]) < 1E16)) { // Ensure headroom for energy calculation
av_log(avctx, AV_LOG_ERROR, "Input contains (near) NaN/+-Inf\n");
return AVERROR(EINVAL);
}
}
avoid_clipping(s, sce);
}
start_ch += chans;
}
if ((ret = ff_alloc_packet(avctx, avpkt, 8192 * s->channels)) < 0)
return ret;
frame_bits = its = 0;
do {
init_put_bits(&s->pb, avpkt->data, avpkt->size);
if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
put_bitstream_info(s, LIBAVCODEC_IDENT);
start_ch = 0;
target_bits = 0;
memset(chan_el_counter, 0, sizeof(chan_el_counter));
for (i = 0; i < s->chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
const float *coeffs[2];
tag = s->chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
cpe->common_window = 0;
memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
put_bits(&s->pb, 3, tag);
put_bits(&s->pb, 4, chan_el_counter[tag]++);
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
coeffs[ch] = sce->coeffs;
sce->ics.predictor_present = 0;
sce->ics.ltp.present = 0;
memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used));
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
for (w = 0; w < 128; w++)
if (sce->band_type[w] > RESERVED_BT)
sce->band_type[w] = 0;
}
s->psy.bitres.alloc = -1;
s->psy.bitres.bits = s->last_frame_pb_count / s->channels;
s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
if (s->psy.bitres.alloc > 0) {
/* Lambda unused here on purpose, we need to take psy's unscaled allocation */
target_bits += s->psy.bitres.alloc
* (s->lambda / (avctx->global_quality ? avctx->global_quality : 120));
s->psy.bitres.alloc /= chans;
}
s->cur_type = tag;
for (ch = 0; ch < chans; ch++) {
s->cur_channel = start_ch + ch;
if (s->options.pns && s->coder->mark_pns)
s->coder->mark_pns(s, avctx, &cpe->ch[ch]);
s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
}
if (chans > 1
&& wi[0].window_type[0] == wi[1].window_type[0]
&& wi[0].window_shape == wi[1].window_shape) {
cpe->common_window = 1;
for (w = 0; w < wi[0].num_windows; w++) {
if (wi[0].grouping[w] != wi[1].grouping[w]) {
cpe->common_window = 0;
break;
}
}
}
for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.tns && s->coder->search_for_tns)
s->coder->search_for_tns(s, sce);
if (s->options.tns && s->coder->apply_tns_filt)
s->coder->apply_tns_filt(s, sce);
if (sce->tns.present)
tns_mode = 1;
if (s->options.pns && s->coder->search_for_pns)
s->coder->search_for_pns(s, avctx, sce);
}
s->cur_channel = start_ch;
if (s->options.intensity_stereo) { /* Intensity Stereo */
if (s->coder->search_for_is)
s->coder->search_for_is(s, avctx, cpe);
if (cpe->is_mode) is_mode = 1;
apply_intensity_stereo(cpe);
}
if (s->options.pred) { /* Prediction */
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.pred && s->coder->search_for_pred)
s->coder->search_for_pred(s, sce);
if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
}
if (s->coder->adjust_common_pred)
s->coder->adjust_common_pred(s, cpe);
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.pred && s->coder->apply_main_pred)
s->coder->apply_main_pred(s, sce);
}
s->cur_channel = start_ch;
}
if (s->options.mid_side) { /* Mid/Side stereo */
if (s->options.mid_side == -1 && s->coder->search_for_ms)
s->coder->search_for_ms(s, cpe);
else if (cpe->common_window)
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
apply_mid_side_stereo(cpe);
}
adjust_frame_information(cpe, chans);
if (s->options.ltp) { /* LTP */
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->coder->search_for_ltp)
s->coder->search_for_ltp(s, sce, cpe->common_window);
if (sce->ics.ltp.present) pred_mode = 1;
}
s->cur_channel = start_ch;
if (s->coder->adjust_common_ltp)
s->coder->adjust_common_ltp(s, cpe);
}
if (chans == 2) {
put_bits(&s->pb, 1, cpe->common_window);
if (cpe->common_window) {
put_ics_info(s, &cpe->ch[0].ics);
if (s->coder->encode_main_pred)
s->coder->encode_main_pred(s, &cpe->ch[0]);
if (s->coder->encode_ltp_info)
s->coder->encode_ltp_info(s, &cpe->ch[0], 1);
encode_ms_info(&s->pb, cpe);
if (cpe->ms_mode) ms_mode = 1;
}
}
for (ch = 0; ch < chans; ch++) {
s->cur_channel = start_ch + ch;
encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
}
start_ch += chans;
}
if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
/* When using a constant Q-scale, don't mess with lambda */
break;
}
/* rate control stuff
* allow between the nominal bitrate, and what psy's bit reservoir says to target
* but drift towards the nominal bitrate always
*/
frame_bits = put_bits_count(&s->pb);
rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate;
rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3);
too_many_bits = FFMAX(target_bits, rate_bits);
too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3);
too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits);
/* When using ABR, be strict (but only for increasing) */
too_few_bits = too_few_bits - too_few_bits/8;
too_many_bits = too_many_bits + too_many_bits/2;
if ( its == 0 /* for steady-state Q-scale tracking */
|| (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits))
|| frame_bits >= 6144 * s->channels - 3 )
{
float ratio = ((float)rate_bits) / frame_bits;
if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) {
/*
* This path is for steady-state Q-scale tracking
* When frame bits fall within the stable range, we still need to adjust
* lambda to maintain it like so in a stable fashion (large jumps in lambda
* create artifacts and should be avoided), but slowly
*/
ratio = sqrtf(sqrtf(ratio));
ratio = av_clipf(ratio, 0.9f, 1.1f);
} else {
/* Not so fast though */
ratio = sqrtf(ratio);
}
s->lambda = av_clipf(s->lambda * ratio, FLT_EPSILON, 65536.f);
/* Keep iterating if we must reduce and lambda is in the sky */
if (ratio > 0.9f && ratio < 1.1f) {
break;
} else {
if (is_mode || ms_mode || tns_mode || pred_mode) {
for (i = 0; i < s->chan_map[0]; i++) {
// Must restore coeffs
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
for (ch = 0; ch < chans; ch++)
memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
}
}
its++;
}
} else {
break;
}
} while (1);
if (s->options.ltp && s->coder->ltp_insert_new_frame)
s->coder->ltp_insert_new_frame(s);
put_bits(&s->pb, 3, TYPE_END);
flush_put_bits(&s->pb);
s->last_frame_pb_count = put_bits_count(&s->pb);
avpkt->size = put_bytes_output(&s->pb);
s->lambda_sum += s->lambda;
s->lambda_count++;
ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
&avpkt->duration);
*got_packet_ptr = 1;
return 0;
}
static av_cold int aac_encode_end(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_count ? s->lambda_sum / s->lambda_count : NAN);
ff_mdct_end(&s->mdct1024);
ff_mdct_end(&s->mdct128);
ff_psy_end(&s->psy);
ff_lpc_end(&s->lpc);
if (s->psypp)
ff_psy_preprocess_end(s->psypp);
av_freep(&s->buffer.samples);
av_freep(&s->cpe);
av_freep(&s->fdsp);
ff_af_queue_close(&s->afq);
return 0;
}
static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
{
int ret = 0;
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!s->fdsp)
return AVERROR(ENOMEM);
// window init
ff_aac_float_common_init();
if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
return ret;
if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
return ret;
return 0;
}
static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
{
int ch;
if (!FF_ALLOCZ_TYPED_ARRAY(s->buffer.samples, s->channels * 3 * 1024) ||
!FF_ALLOCZ_TYPED_ARRAY(s->cpe, s->chan_map[0]))
return AVERROR(ENOMEM);
for(ch = 0; ch < s->channels; ch++)
s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
return 0;
}
static av_cold int aac_encode_init(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
int i, ret = 0;
const uint8_t *sizes[2];
uint8_t grouping[AAC_MAX_CHANNELS];
int lengths[2];
/* Constants */
s->last_frame_pb_count = 0;
avctx->frame_size = 1024;
avctx->initial_padding = 1024;
s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
/* Channel map and unspecified bitrate guessing */
s->channels = avctx->channels;
s->needs_pce = 1;
for (i = 0; i < FF_ARRAY_ELEMS(aac_normal_chan_layouts); i++) {
if (avctx->channel_layout == aac_normal_chan_layouts[i]) {
s->needs_pce = s->options.pce;
break;
}
}
if (s->needs_pce) {
char buf[64];
for (i = 0; i < FF_ARRAY_ELEMS(aac_pce_configs); i++)
if (avctx->channel_layout == aac_pce_configs[i].layout)
break;
av_get_channel_layout_string(buf, sizeof(buf), -1, avctx->channel_layout);
ERROR_IF(i == FF_ARRAY_ELEMS(aac_pce_configs), "Unsupported channel layout \"%s\"\n", buf);
av_log(avctx, AV_LOG_INFO, "Using a PCE to encode channel layout \"%s\"\n", buf);
s->pce = aac_pce_configs[i];
s->reorder_map = s->pce.reorder_map;
s->chan_map = s->pce.config_map;
} else {
s->reorder_map = aac_chan_maps[s->channels - 1];
s->chan_map = aac_chan_configs[s->channels - 1];
}
if (!avctx->bit_rate) {
for (i = 1; i <= s->chan_map[0]; i++) {
avctx->bit_rate += s->chan_map[i] == TYPE_CPE ? 128000 : /* Pair */
s->chan_map[i] == TYPE_LFE ? 16000 : /* LFE */
69000 ; /* SCE */
}
}
/* Samplerate */
for (i = 0; i < 16; i++)
if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
break;
s->samplerate_index = i;
ERROR_IF(s->samplerate_index == 16 ||
s->samplerate_index >= ff_aac_swb_size_1024_len ||
s->samplerate_index >= ff_aac_swb_size_128_len,
"Unsupported sample rate %d\n", avctx->sample_rate);
/* Bitrate limiting */
WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
"Too many bits %f > %d per frame requested, clamping to max\n",
1024.0 * avctx->bit_rate / avctx->sample_rate,
6144 * s->channels);
avctx->bit_rate = (int64_t)FFMIN(6144 * s->channels / 1024.0 * avctx->sample_rate,
avctx->bit_rate);
/* Profile and option setting */
avctx->profile = avctx->profile == FF_PROFILE_UNKNOWN ? FF_PROFILE_AAC_LOW :
avctx->profile;
for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++)
if (avctx->profile == aacenc_profiles[i])
break;
if (avctx->profile == FF_PROFILE_MPEG2_AAC_LOW) {
avctx->profile = FF_PROFILE_AAC_LOW;
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"mpeg2_aac_low\" profile\n");
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n");
WARN_IF(s->options.pns,
"PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n");
s->options.pns = 0;
} else if (avctx->profile == FF_PROFILE_AAC_LTP) {
s->options.ltp = 1;
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"aac_ltp\" profile\n");
} else if (avctx->profile == FF_PROFILE_AAC_MAIN) {
s->options.pred = 1;
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"aac_main\" profile\n");
} else if (s->options.ltp) {
avctx->profile = FF_PROFILE_AAC_LTP;
WARN_IF(1,
"Chainging profile to \"aac_ltp\"\n");
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"aac_ltp\" profile\n");
} else if (s->options.pred) {
avctx->profile = FF_PROFILE_AAC_MAIN;
WARN_IF(1,
"Chainging profile to \"aac_main\"\n");
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"aac_main\" profile\n");
}
s->profile = avctx->profile;
/* Coder limitations */
s->coder = &ff_aac_coders[s->options.coder];
if (s->options.coder == AAC_CODER_ANMR) {
ERROR_IF(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
"The ANMR coder is considered experimental, add -strict -2 to enable!\n");
s->options.intensity_stereo = 0;
s->options.pns = 0;
}
ERROR_IF(s->options.ltp && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
"The LPT profile requires experimental compliance, add -strict -2 to enable!\n");
/* M/S introduces horrible artifacts with multichannel files, this is temporary */
if (s->channels > 3)
s->options.mid_side = 0;
if ((ret = dsp_init(avctx, s)) < 0)
return ret;
if ((ret = alloc_buffers(avctx, s)) < 0)
return ret;
if ((ret = put_audio_specific_config(avctx)))
return ret;
sizes[0] = ff_aac_swb_size_1024[s->samplerate_index];
sizes[1] = ff_aac_swb_size_128[s->samplerate_index];
lengths[0] = ff_aac_num_swb_1024[s->samplerate_index];
lengths[1] = ff_aac_num_swb_128[s->samplerate_index];
for (i = 0; i < s->chan_map[0]; i++)
grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
s->chan_map[0], grouping)) < 0)
return ret;
s->psypp = ff_psy_preprocess_init(avctx);
ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
s->random_state = 0x1f2e3d4c;
s->abs_pow34 = abs_pow34_v;
s->quant_bands = quantize_bands;
if (ARCH_X86)
ff_aac_dsp_init_x86(s);
if (HAVE_MIPSDSP)
ff_aac_coder_init_mips(s);
ff_af_queue_init(avctx, &s->afq);
ff_aac_tableinit();
return 0;
}
#define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption aacenc_options[] = {
{"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "coder"},
{"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
{"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
{"fast", "Default fast search", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
{"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS},
{"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
{"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
{"aac_pce", "Forces the use of PCEs", offsetof(AACEncContext, options.pce), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
FF_AAC_PROFILE_OPTS
{NULL}
};
static const AVClass aacenc_class = {
.class_name = "AAC encoder",
.item_name = av_default_item_name,
.option = aacenc_options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVCodecDefault aac_encode_defaults[] = {
{ "b", "0" },
{ NULL }
};
const AVCodec ff_aac_encoder = {
.name = "aac",
.long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_AAC,
.priv_data_size = sizeof(AACEncContext),
.init = aac_encode_init,
.encode2 = aac_encode_frame,
.close = aac_encode_end,
.defaults = aac_encode_defaults,
.supported_samplerates = ff_mpeg4audio_sample_rates,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE },
.priv_class = &aacenc_class,
};