ffmpeg/libavfilter/af_dynaudnorm.c

1038 lines
35 KiB
C

/*
* Dynamic Audio Normalizer
* Copyright (c) 2015 LoRd_MuldeR <mulder2@gmx.de>. Some rights reserved.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Dynamic Audio Normalizer
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/eval.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#define MIN_FILTER_SIZE 3
#define MAX_FILTER_SIZE 301
#define FF_BUFQUEUE_SIZE (MAX_FILTER_SIZE + 1)
#include "libavfilter/bufferqueue.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
static const char * const var_names[] = {
"ch", ///< the value of the current channel
"sn", ///< number of samples
"nb_channels",
"t", ///< timestamp expressed in seconds
"sr", ///< sample rate
"p", ///< peak value
NULL
};
enum var_name {
VAR_CH,
VAR_SN,
VAR_NB_CHANNELS,
VAR_T,
VAR_SR,
VAR_P,
VAR_VARS_NB
};
typedef struct local_gain {
double max_gain;
double threshold;
} local_gain;
typedef struct cqueue {
double *elements;
int size;
int max_size;
int nb_elements;
} cqueue;
typedef struct DynamicAudioNormalizerContext {
const AVClass *class;
struct FFBufQueue queue;
int frame_len;
int frame_len_msec;
int filter_size;
int dc_correction;
int channels_coupled;
int alt_boundary_mode;
double overlap;
char *expr_str;
double peak_value;
double max_amplification;
double target_rms;
double compress_factor;
double threshold;
double *prev_amplification_factor;
double *dc_correction_value;
double *compress_threshold;
double *weights;
int channels;
int sample_advance;
int eof;
char *channels_to_filter;
AVChannelLayout ch_layout;
int64_t pts;
cqueue **gain_history_original;
cqueue **gain_history_minimum;
cqueue **gain_history_smoothed;
cqueue **threshold_history;
cqueue *is_enabled;
AVFrame *window;
AVExpr *expr;
double var_values[VAR_VARS_NB];
} DynamicAudioNormalizerContext;
typedef struct ThreadData {
AVFrame *in, *out;
int enabled;
} ThreadData;
#define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption dynaudnorm_options[] = {
{ "framelen", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
{ "f", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
{ "gausssize", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
{ "g", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
{ "peak", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
{ "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
{ "maxgain", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
{ "m", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
{ "targetrms", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "r", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "coupling", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "n", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "correctdc", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "c", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "altboundary", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "b", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "compress", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
{ "s", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
{ "threshold", "set the threshold value", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "t", "set the threshold value", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "channels", "set channels to filter", OFFSET(channels_to_filter),AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS },
{ "h", "set channels to filter", OFFSET(channels_to_filter),AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS },
{ "overlap", "set the frame overlap", OFFSET(overlap), AV_OPT_TYPE_DOUBLE, {.dbl=.0}, 0.0, 1.0, FLAGS },
{ "o", "set the frame overlap", OFFSET(overlap), AV_OPT_TYPE_DOUBLE, {.dbl=.0}, 0.0, 1.0, FLAGS },
{ "curve", "set the custom peak mapping curve",OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "v", "set the custom peak mapping curve",OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dynaudnorm);
static av_cold int init(AVFilterContext *ctx)
{
DynamicAudioNormalizerContext *s = ctx->priv;
if (!(s->filter_size & 1)) {
av_log(ctx, AV_LOG_WARNING, "filter size %d is invalid. Changing to an odd value.\n", s->filter_size);
s->filter_size |= 1;
}
return 0;
}
static inline int frame_size(int sample_rate, int frame_len_msec)
{
const int frame_size = lrint((double)sample_rate * (frame_len_msec / 1000.0));
return frame_size + (frame_size % 2);
}
static cqueue *cqueue_create(int size, int max_size)
{
cqueue *q;
if (max_size < size)
return NULL;
q = av_malloc(sizeof(cqueue));
if (!q)
return NULL;
q->max_size = max_size;
q->size = size;
q->nb_elements = 0;
q->elements = av_malloc_array(max_size, sizeof(double));
if (!q->elements) {
av_free(q);
return NULL;
}
return q;
}
static void cqueue_free(cqueue *q)
{
if (q)
av_free(q->elements);
av_free(q);
}
static int cqueue_size(cqueue *q)
{
return q->nb_elements;
}
static int cqueue_empty(cqueue *q)
{
return q->nb_elements <= 0;
}
static int cqueue_enqueue(cqueue *q, double element)
{
av_assert2(q->nb_elements < q->max_size);
q->elements[q->nb_elements] = element;
q->nb_elements++;
return 0;
}
static double cqueue_peek(cqueue *q, int index)
{
av_assert2(index < q->nb_elements);
return q->elements[index];
}
static int cqueue_dequeue(cqueue *q, double *element)
{
av_assert2(!cqueue_empty(q));
*element = q->elements[0];
memmove(&q->elements[0], &q->elements[1], (q->nb_elements - 1) * sizeof(double));
q->nb_elements--;
return 0;
}
static int cqueue_pop(cqueue *q)
{
av_assert2(!cqueue_empty(q));
memmove(&q->elements[0], &q->elements[1], (q->nb_elements - 1) * sizeof(double));
q->nb_elements--;
return 0;
}
static void cqueue_resize(cqueue *q, int new_size)
{
av_assert2(q->max_size >= new_size);
av_assert2(MIN_FILTER_SIZE <= new_size);
if (new_size > q->nb_elements) {
const int side = (new_size - q->nb_elements) / 2;
memmove(q->elements + side, q->elements, sizeof(double) * q->nb_elements);
for (int i = 0; i < side; i++)
q->elements[i] = q->elements[side];
q->nb_elements = new_size - 1 - side;
} else {
int count = (q->size - new_size + 1) / 2;
while (count-- > 0)
cqueue_pop(q);
}
q->size = new_size;
}
static void init_gaussian_filter(DynamicAudioNormalizerContext *s)
{
double total_weight = 0.0;
const double sigma = (((s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0);
double adjust;
// Pre-compute constants
const int offset = s->filter_size / 2;
const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI));
const double c2 = 2.0 * sigma * sigma;
// Compute weights
for (int i = 0; i < s->filter_size; i++) {
const int x = i - offset;
s->weights[i] = c1 * exp(-x * x / c2);
total_weight += s->weights[i];
}
// Adjust weights
adjust = 1.0 / total_weight;
for (int i = 0; i < s->filter_size; i++) {
s->weights[i] *= adjust;
}
}
static av_cold void uninit(AVFilterContext *ctx)
{
DynamicAudioNormalizerContext *s = ctx->priv;
av_freep(&s->prev_amplification_factor);
av_freep(&s->dc_correction_value);
av_freep(&s->compress_threshold);
for (int c = 0; c < s->channels; c++) {
if (s->gain_history_original)
cqueue_free(s->gain_history_original[c]);
if (s->gain_history_minimum)
cqueue_free(s->gain_history_minimum[c]);
if (s->gain_history_smoothed)
cqueue_free(s->gain_history_smoothed[c]);
if (s->threshold_history)
cqueue_free(s->threshold_history[c]);
}
av_freep(&s->gain_history_original);
av_freep(&s->gain_history_minimum);
av_freep(&s->gain_history_smoothed);
av_freep(&s->threshold_history);
cqueue_free(s->is_enabled);
s->is_enabled = NULL;
av_freep(&s->weights);
av_channel_layout_uninit(&s->ch_layout);
ff_bufqueue_discard_all(&s->queue);
av_frame_free(&s->window);
av_expr_free(s->expr);
s->expr = NULL;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
DynamicAudioNormalizerContext *s = ctx->priv;
int ret = 0;
uninit(ctx);
s->channels = inlink->ch_layout.nb_channels;
s->frame_len = frame_size(inlink->sample_rate, s->frame_len_msec);
av_log(ctx, AV_LOG_DEBUG, "frame len %d\n", s->frame_len);
s->prev_amplification_factor = av_malloc_array(inlink->ch_layout.nb_channels, sizeof(*s->prev_amplification_factor));
s->dc_correction_value = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->dc_correction_value));
s->compress_threshold = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->compress_threshold));
s->gain_history_original = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->gain_history_original));
s->gain_history_minimum = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->gain_history_minimum));
s->gain_history_smoothed = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->gain_history_smoothed));
s->threshold_history = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->threshold_history));
s->weights = av_malloc_array(MAX_FILTER_SIZE, sizeof(*s->weights));
s->is_enabled = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
if (!s->prev_amplification_factor || !s->dc_correction_value ||
!s->compress_threshold ||
!s->gain_history_original || !s->gain_history_minimum ||
!s->gain_history_smoothed || !s->threshold_history ||
!s->is_enabled || !s->weights)
return AVERROR(ENOMEM);
for (int c = 0; c < inlink->ch_layout.nb_channels; c++) {
s->prev_amplification_factor[c] = 1.0;
s->gain_history_original[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->gain_history_minimum[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->gain_history_smoothed[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->threshold_history[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
if (!s->gain_history_original[c] || !s->gain_history_minimum[c] ||
!s->gain_history_smoothed[c] || !s->threshold_history[c])
return AVERROR(ENOMEM);
}
init_gaussian_filter(s);
s->window = ff_get_audio_buffer(ctx->outputs[0], s->frame_len * 2);
if (!s->window)
return AVERROR(ENOMEM);
s->sample_advance = FFMAX(1, lrint(s->frame_len * (1. - s->overlap)));
s->var_values[VAR_SR] = inlink->sample_rate;
s->var_values[VAR_NB_CHANNELS] = s->channels;
if (s->expr_str)
ret = av_expr_parse(&s->expr, s->expr_str, var_names, NULL, NULL,
NULL, NULL, 0, ctx);
return ret;
}
static inline double fade(double prev, double next, int pos, int length)
{
const double step_size = 1.0 / length;
const double f0 = 1.0 - (step_size * (pos + 1.0));
const double f1 = 1.0 - f0;
return f0 * prev + f1 * next;
}
static inline double pow_2(const double value)
{
return value * value;
}
static inline double bound(const double threshold, const double val)
{
const double CONST = 0.8862269254527580136490837416705725913987747280611935; //sqrt(PI) / 2.0
return erf(CONST * (val / threshold)) * threshold;
}
static double find_peak_magnitude(AVFrame *frame, int channel)
{
double max = DBL_EPSILON;
if (channel == -1) {
for (int c = 0; c < frame->ch_layout.nb_channels; c++) {
double *data_ptr = (double *)frame->extended_data[c];
for (int i = 0; i < frame->nb_samples; i++)
max = fmax(max, fabs(data_ptr[i]));
}
} else {
double *data_ptr = (double *)frame->extended_data[channel];
for (int i = 0; i < frame->nb_samples; i++)
max = fmax(max, fabs(data_ptr[i]));
}
return max;
}
static double compute_frame_rms(AVFrame *frame, int channel)
{
double rms_value = 0.0;
if (channel == -1) {
for (int c = 0; c < frame->ch_layout.nb_channels; c++) {
const double *data_ptr = (double *)frame->extended_data[c];
for (int i = 0; i < frame->nb_samples; i++) {
rms_value += pow_2(data_ptr[i]);
}
}
rms_value /= frame->nb_samples * frame->ch_layout.nb_channels;
} else {
const double *data_ptr = (double *)frame->extended_data[channel];
for (int i = 0; i < frame->nb_samples; i++) {
rms_value += pow_2(data_ptr[i]);
}
rms_value /= frame->nb_samples;
}
return fmax(sqrt(rms_value), DBL_EPSILON);
}
static local_gain get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame,
int channel)
{
const double peak_magnitude = find_peak_magnitude(frame, channel);
const double maximum_gain = s->peak_value / peak_magnitude;
const double rms_gain = s->target_rms > DBL_EPSILON ? (s->target_rms / compute_frame_rms(frame, channel)) : DBL_MAX;
double target_gain = DBL_MAX;
local_gain gain;
if (s->expr_str) {
double var_values[VAR_VARS_NB];
memcpy(var_values, s->var_values, sizeof(var_values));
var_values[VAR_CH] = channel;
var_values[VAR_P] = peak_magnitude;
target_gain = av_expr_eval(s->expr, var_values, s) / peak_magnitude;
}
gain.threshold = peak_magnitude > s->threshold;
gain.max_gain = bound(s->max_amplification, fmin(target_gain, fmin(maximum_gain, rms_gain)));
return gain;
}
static double minimum_filter(cqueue *q)
{
double min = DBL_MAX;
for (int i = 0; i < cqueue_size(q); i++) {
min = fmin(min, cqueue_peek(q, i));
}
return min;
}
static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q, cqueue *tq)
{
const double *weights = s->weights;
double result = 0.0, tsum = 0.0;
for (int i = 0; i < cqueue_size(q); i++) {
double tq_item = cqueue_peek(tq, i);
double q_item = cqueue_peek(q, i);
tsum += tq_item * weights[i];
result += tq_item * weights[i] * q_item;
}
if (tsum == 0.0)
result = 1.0;
return result;
}
static void update_gain_history(DynamicAudioNormalizerContext *s, int channel,
local_gain gain)
{
if (cqueue_empty(s->gain_history_original[channel])) {
const int pre_fill_size = s->filter_size / 2;
const double initial_value = s->alt_boundary_mode ? gain.max_gain : fmin(1.0, gain.max_gain);
s->prev_amplification_factor[channel] = initial_value;
while (cqueue_size(s->gain_history_original[channel]) < pre_fill_size) {
cqueue_enqueue(s->gain_history_original[channel], initial_value);
cqueue_enqueue(s->threshold_history[channel], gain.threshold);
}
}
cqueue_enqueue(s->gain_history_original[channel], gain.max_gain);
while (cqueue_size(s->gain_history_original[channel]) >= s->filter_size) {
double minimum;
if (cqueue_empty(s->gain_history_minimum[channel])) {
const int pre_fill_size = s->filter_size / 2;
double initial_value = s->alt_boundary_mode ? cqueue_peek(s->gain_history_original[channel], 0) : 1.0;
int input = pre_fill_size;
while (cqueue_size(s->gain_history_minimum[channel]) < pre_fill_size) {
input++;
initial_value = fmin(initial_value, cqueue_peek(s->gain_history_original[channel], input));
cqueue_enqueue(s->gain_history_minimum[channel], initial_value);
}
}
minimum = minimum_filter(s->gain_history_original[channel]);
cqueue_enqueue(s->gain_history_minimum[channel], minimum);
cqueue_enqueue(s->threshold_history[channel], gain.threshold);
cqueue_pop(s->gain_history_original[channel]);
}
while (cqueue_size(s->gain_history_minimum[channel]) >= s->filter_size) {
double smoothed, limit;
smoothed = gaussian_filter(s, s->gain_history_minimum[channel], s->threshold_history[channel]);
limit = cqueue_peek(s->gain_history_original[channel], 0);
smoothed = fmin(smoothed, limit);
cqueue_enqueue(s->gain_history_smoothed[channel], smoothed);
cqueue_pop(s->gain_history_minimum[channel]);
cqueue_pop(s->threshold_history[channel]);
}
}
static int update_gain_histories(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
DynamicAudioNormalizerContext *s = ctx->priv;
AVFrame *analyze_frame = arg;
const int channels = s->channels;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
for (int c = start; c < end; c++)
update_gain_history(s, c, get_max_local_gain(s, analyze_frame, c));
return 0;
}
static inline double update_value(double new, double old, double aggressiveness)
{
av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0));
return aggressiveness * new + (1.0 - aggressiveness) * old;
}
static inline int bypass_channel(DynamicAudioNormalizerContext *s, AVFrame *frame, int ch)
{
enum AVChannel channel = av_channel_layout_channel_from_index(&frame->ch_layout, ch);
return av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0;
}
static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame)
{
const double diff = 1.0 / frame->nb_samples;
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
for (int c = 0; c < s->channels; c++) {
const int bypass = bypass_channel(s, frame, c);
double *dst_ptr = (double *)frame->extended_data[c];
double current_average_value = 0.0;
double prev_value;
for (int i = 0; i < frame->nb_samples; i++)
current_average_value += dst_ptr[i] * diff;
prev_value = is_first_frame ? current_average_value : s->dc_correction_value[c];
s->dc_correction_value[c] = is_first_frame ? current_average_value : update_value(current_average_value, s->dc_correction_value[c], 0.1);
for (int i = 0; i < frame->nb_samples && !bypass; i++) {
dst_ptr[i] -= fade(prev_value, s->dc_correction_value[c], i, frame->nb_samples);
}
}
}
static double setup_compress_thresh(double threshold)
{
if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) {
double current_threshold = threshold;
double step_size = 1.0;
while (step_size > DBL_EPSILON) {
while ((llrint((current_threshold + step_size) * (UINT64_C(1) << 63)) >
llrint(current_threshold * (UINT64_C(1) << 63))) &&
(bound(current_threshold + step_size, 1.0) <= threshold)) {
current_threshold += step_size;
}
step_size /= 2.0;
}
return current_threshold;
} else {
return threshold;
}
}
static double compute_frame_std_dev(DynamicAudioNormalizerContext *s,
AVFrame *frame, int channel)
{
double variance = 0.0;
if (channel == -1) {
for (int c = 0; c < s->channels; c++) {
const double *data_ptr = (double *)frame->extended_data[c];
for (int i = 0; i < frame->nb_samples; i++) {
variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero*
}
}
variance /= (s->channels * frame->nb_samples) - 1;
} else {
const double *data_ptr = (double *)frame->extended_data[channel];
for (int i = 0; i < frame->nb_samples; i++) {
variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero*
}
variance /= frame->nb_samples - 1;
}
return fmax(sqrt(variance), DBL_EPSILON);
}
static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame)
{
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
if (s->channels_coupled) {
const double standard_deviation = compute_frame_std_dev(s, frame, -1);
const double current_threshold = fmin(1.0, s->compress_factor * standard_deviation);
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[0];
double prev_actual_thresh, curr_actual_thresh;
s->compress_threshold[0] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[0], (1.0/3.0));
prev_actual_thresh = setup_compress_thresh(prev_value);
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[0]);
for (int c = 0; c < s->channels; c++) {
double *const dst_ptr = (double *)frame->extended_data[c];
const int bypass = bypass_channel(s, frame, c);
if (bypass)
continue;
for (int i = 0; i < frame->nb_samples; i++) {
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, frame->nb_samples);
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
}
}
} else {
for (int c = 0; c < s->channels; c++) {
const int bypass = bypass_channel(s, frame, c);
const double standard_deviation = compute_frame_std_dev(s, frame, c);
const double current_threshold = setup_compress_thresh(fmin(1.0, s->compress_factor * standard_deviation));
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[c];
double prev_actual_thresh, curr_actual_thresh;
double *dst_ptr;
s->compress_threshold[c] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[c], 1.0/3.0);
prev_actual_thresh = setup_compress_thresh(prev_value);
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[c]);
dst_ptr = (double *)frame->extended_data[c];
for (int i = 0; i < frame->nb_samples && !bypass; i++) {
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, frame->nb_samples);
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
}
}
}
}
static int analyze_frame(AVFilterContext *ctx, AVFilterLink *outlink, AVFrame **frame)
{
DynamicAudioNormalizerContext *s = ctx->priv;
AVFrame *analyze_frame;
if (s->dc_correction || s->compress_factor > DBL_EPSILON) {
int ret;
if (!av_frame_is_writable(*frame)) {
AVFrame *out = ff_get_audio_buffer(outlink, (*frame)->nb_samples);
if (!out) {
av_frame_free(frame);
return AVERROR(ENOMEM);
}
ret = av_frame_copy_props(out, *frame);
if (ret < 0) {
av_frame_free(frame);
av_frame_free(&out);
return ret;
}
ret = av_frame_copy(out, *frame);
if (ret < 0) {
av_frame_free(frame);
av_frame_free(&out);
return ret;
}
av_frame_free(frame);
*frame = out;
}
}
if (s->dc_correction)
perform_dc_correction(s, *frame);
if (s->compress_factor > DBL_EPSILON)
perform_compression(s, *frame);
if (s->frame_len != s->sample_advance) {
const int offset = s->frame_len - s->sample_advance;
for (int c = 0; c < s->channels; c++) {
double *src = (double *)s->window->extended_data[c];
memmove(src, &src[s->sample_advance], offset * sizeof(double));
memcpy(&src[offset], (*frame)->extended_data[c], (*frame)->nb_samples * sizeof(double));
memset(&src[offset + (*frame)->nb_samples], 0, (s->sample_advance - (*frame)->nb_samples) * sizeof(double));
}
analyze_frame = s->window;
} else {
av_samples_copy(s->window->extended_data, (*frame)->extended_data, 0, 0,
FFMIN(s->frame_len, (*frame)->nb_samples), (*frame)->ch_layout.nb_channels, (*frame)->format);
analyze_frame = *frame;
}
s->var_values[VAR_SN] = outlink->sample_count_in;
s->var_values[VAR_T] = s->var_values[VAR_SN] * (double)1/outlink->sample_rate;
if (s->channels_coupled) {
const local_gain gain = get_max_local_gain(s, analyze_frame, -1);
for (int c = 0; c < s->channels; c++)
update_gain_history(s, c, gain);
} else {
ff_filter_execute(ctx, update_gain_histories, analyze_frame, NULL,
FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));
}
return 0;
}
static void amplify_channel(DynamicAudioNormalizerContext *s, AVFrame *in,
AVFrame *frame, int enabled, int c)
{
const int bypass = bypass_channel(s, frame, c);
const double *src_ptr = (const double *)in->extended_data[c];
double *dst_ptr = (double *)frame->extended_data[c];
double current_amplification_factor;
cqueue_dequeue(s->gain_history_smoothed[c], &current_amplification_factor);
for (int i = 0; i < frame->nb_samples && enabled && !bypass; i++) {
const double amplification_factor = fade(s->prev_amplification_factor[c],
current_amplification_factor, i,
frame->nb_samples);
dst_ptr[i] = src_ptr[i] * amplification_factor;
}
s->prev_amplification_factor[c] = current_amplification_factor;
}
static int amplify_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
DynamicAudioNormalizerContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
const int enabled = td->enabled;
const int channels = s->channels;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
for (int ch = start; ch < end; ch++)
amplify_channel(s, in, out, enabled, ch);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
DynamicAudioNormalizerContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
ThreadData td;
int ret;
while (((s->queue.available >= s->filter_size) ||
(s->eof && s->queue.available)) &&
!cqueue_empty(s->gain_history_smoothed[0])) {
AVFrame *in = ff_bufqueue_get(&s->queue);
AVFrame *out;
double is_enabled;
cqueue_dequeue(s->is_enabled, &is_enabled);
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
td.enabled = is_enabled > 0.;
ff_filter_execute(ctx, amplify_channels, &td, NULL,
FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));
s->pts = out->pts + av_rescale_q(out->nb_samples, av_make_q(1, outlink->sample_rate),
outlink->time_base);
if (out != in)
av_frame_free(&in);
ret = ff_filter_frame(outlink, out);
if (ret < 0)
return ret;
}
ret = analyze_frame(ctx, outlink, &in);
if (ret < 0)
return ret;
if (!s->eof) {
ff_bufqueue_add(ctx, &s->queue, in);
cqueue_enqueue(s->is_enabled, !ctx->is_disabled);
} else {
av_frame_free(&in);
}
return 1;
}
static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink,
AVFilterLink *outlink)
{
AVFrame *out = ff_get_audio_buffer(outlink, s->sample_advance);
if (!out)
return AVERROR(ENOMEM);
for (int c = 0; c < s->channels; c++) {
double *dst_ptr = (double *)out->extended_data[c];
for (int i = 0; i < out->nb_samples; i++) {
dst_ptr[i] = s->alt_boundary_mode ? DBL_EPSILON : ((s->target_rms > DBL_EPSILON) ? fmin(s->peak_value, s->target_rms) : s->peak_value);
if (s->dc_correction) {
dst_ptr[i] *= ((i % 2) == 1) ? -1 : 1;
dst_ptr[i] += s->dc_correction_value[c];
}
}
}
return filter_frame(inlink, out);
}
static int flush(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
DynamicAudioNormalizerContext *s = ctx->priv;
while (s->eof && cqueue_empty(s->gain_history_smoothed[0])) {
for (int c = 0; c < s->channels; c++)
update_gain_history(s, c, (local_gain){ cqueue_peek(s->gain_history_original[c], 0), 1.0});
}
return flush_buffer(s, inlink, outlink);
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
DynamicAudioNormalizerContext *s = ctx->priv;
AVFrame *in = NULL;
int ret = 0, status;
int64_t pts;
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout);
if (ret < 0)
return ret;
if (strcmp(s->channels_to_filter, "all"))
av_channel_layout_from_string(&s->ch_layout, s->channels_to_filter);
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (!s->eof) {
ret = ff_inlink_consume_samples(inlink, s->sample_advance, s->sample_advance, &in);
if (ret < 0)
return ret;
if (ret > 0) {
ret = filter_frame(inlink, in);
if (ret <= 0)
return ret;
}
if (ff_inlink_check_available_samples(inlink, s->sample_advance) > 0) {
ff_filter_set_ready(ctx, 10);
return 0;
}
}
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF)
s->eof = 1;
}
if (s->eof && s->queue.available)
return flush(outlink);
if (s->eof && !s->queue.available) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
return 0;
}
if (!s->eof)
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
DynamicAudioNormalizerContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int prev_filter_size = s->filter_size;
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
s->filter_size |= 1;
if (prev_filter_size != s->filter_size) {
init_gaussian_filter(s);
for (int c = 0; c < s->channels; c++) {
cqueue_resize(s->gain_history_original[c], s->filter_size);
cqueue_resize(s->gain_history_minimum[c], s->filter_size);
cqueue_resize(s->threshold_history[c], s->filter_size);
}
}
s->frame_len = frame_size(inlink->sample_rate, s->frame_len_msec);
s->sample_advance = FFMAX(1, lrint(s->frame_len * (1. - s->overlap)));
if (s->expr_str) {
ret = av_expr_parse(&s->expr, s->expr_str, var_names, NULL, NULL,
NULL, NULL, 0, ctx);
if (ret < 0)
return ret;
}
return 0;
}
static const AVFilterPad avfilter_af_dynaudnorm_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
},
};
const AVFilter ff_af_dynaudnorm = {
.name = "dynaudnorm",
.description = NULL_IF_CONFIG_SMALL("Dynamic Audio Normalizer."),
.priv_size = sizeof(DynamicAudioNormalizerContext),
.init = init,
.uninit = uninit,
.activate = activate,
FILTER_INPUTS(avfilter_af_dynaudnorm_inputs),
FILTER_OUTPUTS(ff_audio_default_filterpad),
FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_DBLP),
.priv_class = &dynaudnorm_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};