/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "tx_priv.h" int ff_tx_type_is_mdct(enum AVTXType type) { switch (type) { case AV_TX_FLOAT_MDCT: case AV_TX_DOUBLE_MDCT: case AV_TX_INT32_MDCT: return 1; default: return 0; } } /* Calculates the modular multiplicative inverse */ static av_always_inline int mulinv(int n, int m) { n = n % m; for (int x = 1; x < m; x++) if (((n * x) % m) == 1) return x; av_assert0(0); /* Never reached */ return 0; } /* Guaranteed to work for any n, m where gcd(n, m) == 1 */ int ff_tx_gen_compound_mapping(AVTXContext *s) { int *in_map, *out_map; const int n = s->n; const int m = s->m; const int inv = s->inv; const int len = n*m; const int m_inv = mulinv(m, n); const int n_inv = mulinv(n, m); const int mdct = ff_tx_type_is_mdct(s->type); if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab)))) return AVERROR(ENOMEM); in_map = s->pfatab; out_map = s->pfatab + n*m; /* Ruritanian map for input, CRT map for output, can be swapped */ for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { /* Shifted by 1 to simplify MDCTs */ in_map[j*n + i] = ((i*m + j*n) % len) << mdct; out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j; } } /* Change transform direction by reversing all ACs */ if (inv) { for (int i = 0; i < m; i++) { int *in = &in_map[i*n + 1]; /* Skip the DC */ for (int j = 0; j < ((n - 1) >> 1); j++) FFSWAP(int, in[j], in[n - j - 2]); } } /* Our 15-point transform is also a compound one, so embed its input map */ if (n == 15) { for (int k = 0; k < m; k++) { int tmp[15]; memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp)); for (int i = 0; i < 5; i++) { for (int j = 0; j < 3; j++) in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15]; } } } return 0; } static inline int split_radix_permutation(int i, int m, int inverse) { m >>= 1; if (m <= 1) return i & 1; if (!(i & m)) return split_radix_permutation(i, m, inverse) * 2; m >>= 1; return split_radix_permutation(i, m, inverse) * 4 + 1 - 2*(!(i & m) ^ inverse); } int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup) { const int m = s->m, inv = s->inv; if (!(s->revtab = av_malloc(s->m*sizeof(*s->revtab)))) return AVERROR(ENOMEM); if (!(s->revtab_c = av_malloc(m*sizeof(*s->revtab_c)))) return AVERROR(ENOMEM); /* Default */ for (int i = 0; i < m; i++) { int k = -split_radix_permutation(i, m, inv) & (m - 1); if (invert_lookup) s->revtab[i] = s->revtab_c[i] = k; else s->revtab[i] = s->revtab_c[k] = i; } return 0; } int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab) { int nb_inplace_idx = 0; if (!(s->inplace_idx = av_malloc(s->m*sizeof(*s->inplace_idx)))) return AVERROR(ENOMEM); /* The first coefficient is always already in-place */ for (int src = 1; src < s->m; src++) { int dst = revtab[src]; int found = 0; if (dst <= src) continue; /* This just checks if a closed loop has been encountered before, * and if so, skips it, since to fully permute a loop we must only * enter it once. */ do { for (int j = 0; j < nb_inplace_idx; j++) { if (dst == s->inplace_idx[j]) { found = 1; break; } } dst = revtab[dst]; } while (dst != src && !found); if (!found) s->inplace_idx[nb_inplace_idx++] = src; } s->inplace_idx[nb_inplace_idx++] = 0; return 0; } static void parity_revtab_generator(int *revtab, int n, int inv, int offset, int is_dual, int dual_high, int len, int basis, int dual_stride) { len >>= 1; if (len <= basis) { int k1, k2, *even, *odd, stride; is_dual = is_dual && dual_stride; dual_high = is_dual & dual_high; stride = is_dual ? FFMIN(dual_stride, len) : 0; even = &revtab[offset + dual_high*(stride - 2*len)]; odd = &even[len + (is_dual && !dual_high)*len + dual_high*len]; for (int i = 0; i < len; i++) { k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1); k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1); *even++ = k1; *odd++ = k2; if (stride && !((i + 1) % stride)) { even += stride; odd += stride; } } return; } parity_revtab_generator(revtab, n, inv, offset, 0, 0, len >> 0, basis, dual_stride); parity_revtab_generator(revtab, n, inv, offset + (len >> 0), 1, 0, len >> 1, basis, dual_stride); parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1), 1, 1, len >> 1, basis, dual_stride); } void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv, int basis, int dual_stride) { basis >>= 1; if (len < basis) return; av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1))); av_assert0(dual_stride <= basis); parity_revtab_generator(revtab, len, inv, 0, 0, 0, len, basis, dual_stride); } av_cold void av_tx_uninit(AVTXContext **ctx) { if (!(*ctx)) return; av_free((*ctx)->pfatab); av_free((*ctx)->exptab); av_free((*ctx)->revtab); av_free((*ctx)->revtab_c); av_free((*ctx)->inplace_idx); av_free((*ctx)->tmp); av_freep(ctx); } av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags) { int err; AVTXContext *s = av_mallocz(sizeof(*s)); if (!s) return AVERROR(ENOMEM); switch (type) { case AV_TX_FLOAT_FFT: case AV_TX_FLOAT_MDCT: if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags))) goto fail; if (ARCH_X86) ff_tx_init_float_x86(s, tx); break; case AV_TX_DOUBLE_FFT: case AV_TX_DOUBLE_MDCT: if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags))) goto fail; break; case AV_TX_INT32_FFT: case AV_TX_INT32_MDCT: if ((err = ff_tx_init_mdct_fft_int32(s, tx, type, inv, len, scale, flags))) goto fail; break; default: err = AVERROR(EINVAL); goto fail; } *ctx = s; return 0; fail: av_tx_uninit(&s); *tx = NULL; return err; }