/* * Copyright (c) 2019 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/audio_fifo.h" #include "libavutil/channel_layout.h" #include "libavutil/common.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "formats.h" #include "filters.h" #include "internal.h" typedef struct AudioXCorrelateContext { const AVClass *class; int size; int algo; int64_t pts; AVAudioFifo *fifo[2]; AVFrame *cache[2]; AVFrame *mean_sum[2]; AVFrame *num_sum; AVFrame *den_sum[2]; int used; int (*xcorrelate)(AVFilterContext *ctx, AVFrame *out); } AudioXCorrelateContext; static int query_formats(AVFilterContext *ctx) { static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; int ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; ret = ff_set_common_formats_from_list(ctx, sample_fmts); if (ret < 0) return ret; return ff_set_common_all_samplerates(ctx); } static float mean_sum(const float *in, int size) { float mean_sum = 0.f; for (int i = 0; i < size; i++) mean_sum += in[i]; return mean_sum; } static float square_sum(const float *x, const float *y, int size) { float square_sum = 0.f; for (int i = 0; i < size; i++) square_sum += x[i] * y[i]; return square_sum; } static float xcorrelate(const float *x, const float *y, float sumx, float sumy, int size) { const float xm = sumx / size, ym = sumy / size; float num = 0.f, den, den0 = 0.f, den1 = 0.f; for (int i = 0; i < size; i++) { float xd = x[i] - xm; float yd = y[i] - ym; num += xd * yd; den0 += xd * xd; den1 += yd * yd; } num /= size; den = sqrtf((den0 * den1) / (size * size)); return den <= 1e-6f ? 0.f : num / den; } static int xcorrelate_slow(AVFilterContext *ctx, AVFrame *out) { AudioXCorrelateContext *s = ctx->priv; const int size = s->size; int used; for (int ch = 0; ch < out->channels; ch++) { const float *x = (const float *)s->cache[0]->extended_data[ch]; const float *y = (const float *)s->cache[1]->extended_data[ch]; float *sumx = (float *)s->mean_sum[0]->extended_data[ch]; float *sumy = (float *)s->mean_sum[1]->extended_data[ch]; float *dst = (float *)out->extended_data[ch]; used = s->used; if (!used) { sumx[0] = mean_sum(x, size); sumy[0] = mean_sum(y, size); used = 1; } for (int n = 0; n < out->nb_samples; n++) { dst[n] = xcorrelate(x + n, y + n, sumx[0], sumy[0], size); sumx[0] -= x[n]; sumx[0] += x[n + size]; sumy[0] -= y[n]; sumy[0] += y[n + size]; } } return used; } static int xcorrelate_fast(AVFilterContext *ctx, AVFrame *out) { AudioXCorrelateContext *s = ctx->priv; const int size = s->size; int used; for (int ch = 0; ch < out->channels; ch++) { const float *x = (const float *)s->cache[0]->extended_data[ch]; const float *y = (const float *)s->cache[1]->extended_data[ch]; float *num_sum = (float *)s->num_sum->extended_data[ch]; float *den_sumx = (float *)s->den_sum[0]->extended_data[ch]; float *den_sumy = (float *)s->den_sum[1]->extended_data[ch]; float *dst = (float *)out->extended_data[ch]; used = s->used; if (!used) { num_sum[0] = square_sum(x, y, size); den_sumx[0] = square_sum(x, x, size); den_sumy[0] = square_sum(y, y, size); used = 1; } for (int n = 0; n < out->nb_samples; n++) { float num, den; num = num_sum[0] / size; den = sqrtf((den_sumx[0] * den_sumy[0]) / (size * size)); dst[n] = den <= 1e-6f ? 0.f : num / den; num_sum[0] -= x[n] * y[n]; num_sum[0] += x[n + size] * y[n + size]; den_sumx[0] -= x[n] * x[n]; den_sumx[0] = FFMAX(den_sumx[0], 0.f); den_sumx[0] += x[n + size] * x[n + size]; den_sumy[0] -= y[n] * y[n]; den_sumy[0] = FFMAX(den_sumy[0], 0.f); den_sumy[0] += y[n + size] * y[n + size]; } } return used; } static int activate(AVFilterContext *ctx) { AudioXCorrelateContext *s = ctx->priv; AVFrame *frame = NULL; int ret, status; int available; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx); for (int i = 0; i < 2; i++) { ret = ff_inlink_consume_frame(ctx->inputs[i], &frame); if (ret > 0) { if (s->pts == AV_NOPTS_VALUE) s->pts = frame->pts; ret = av_audio_fifo_write(s->fifo[i], (void **)frame->extended_data, frame->nb_samples); av_frame_free(&frame); if (ret < 0) return ret; } } available = FFMIN(av_audio_fifo_size(s->fifo[0]), av_audio_fifo_size(s->fifo[1])); if (available > s->size) { const int out_samples = available - s->size; AVFrame *out; if (!s->cache[0] || s->cache[0]->nb_samples < available) { av_frame_free(&s->cache[0]); s->cache[0] = ff_get_audio_buffer(ctx->outputs[0], available); if (!s->cache[0]) return AVERROR(ENOMEM); } if (!s->cache[1] || s->cache[1]->nb_samples < available) { av_frame_free(&s->cache[1]); s->cache[1] = ff_get_audio_buffer(ctx->outputs[0], available); if (!s->cache[1]) return AVERROR(ENOMEM); } ret = av_audio_fifo_peek(s->fifo[0], (void **)s->cache[0]->extended_data, available); if (ret < 0) return ret; ret = av_audio_fifo_peek(s->fifo[1], (void **)s->cache[1]->extended_data, available); if (ret < 0) return ret; out = ff_get_audio_buffer(ctx->outputs[0], out_samples); if (!out) return AVERROR(ENOMEM); s->used = s->xcorrelate(ctx, out); out->pts = s->pts; s->pts += out_samples; av_audio_fifo_drain(s->fifo[0], out_samples); av_audio_fifo_drain(s->fifo[1], out_samples); return ff_filter_frame(ctx->outputs[0], out); } if (av_audio_fifo_size(s->fifo[0]) > s->size && av_audio_fifo_size(s->fifo[1]) > s->size) { ff_filter_set_ready(ctx, 10); return 0; } for (int i = 0; i < 2; i++) { if (ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts)) { ff_outlink_set_status(ctx->outputs[0], status, pts); return 0; } } if (ff_outlink_frame_wanted(ctx->outputs[0])) { for (int i = 0; i < 2; i++) { if (av_audio_fifo_size(s->fifo[i]) > s->size) continue; ff_inlink_request_frame(ctx->inputs[i]); return 0; } } return FFERROR_NOT_READY; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; AudioXCorrelateContext *s = ctx->priv; s->pts = AV_NOPTS_VALUE; outlink->format = inlink->format; outlink->channels = inlink->channels; s->fifo[0] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->size); s->fifo[1] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->size); if (!s->fifo[0] || !s->fifo[1]) return AVERROR(ENOMEM); s->mean_sum[0] = ff_get_audio_buffer(outlink, 1); s->mean_sum[1] = ff_get_audio_buffer(outlink, 1); s->num_sum = ff_get_audio_buffer(outlink, 1); s->den_sum[0] = ff_get_audio_buffer(outlink, 1); s->den_sum[1] = ff_get_audio_buffer(outlink, 1); if (!s->mean_sum[0] || !s->mean_sum[1] || !s->num_sum || !s->den_sum[0] || !s->den_sum[1]) return AVERROR(ENOMEM); switch (s->algo) { case 0: s->xcorrelate = xcorrelate_slow; break; case 1: s->xcorrelate = xcorrelate_fast; break; } return 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioXCorrelateContext *s = ctx->priv; av_audio_fifo_free(s->fifo[0]); av_audio_fifo_free(s->fifo[1]); av_frame_free(&s->cache[0]); av_frame_free(&s->cache[1]); av_frame_free(&s->mean_sum[0]); av_frame_free(&s->mean_sum[1]); av_frame_free(&s->num_sum); av_frame_free(&s->den_sum[0]); av_frame_free(&s->den_sum[1]); } static const AVFilterPad inputs[] = { { .name = "axcorrelate0", .type = AVMEDIA_TYPE_AUDIO, }, { .name = "axcorrelate1", .type = AVMEDIA_TYPE_AUDIO, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, }; #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define OFFSET(x) offsetof(AudioXCorrelateContext, x) static const AVOption axcorrelate_options[] = { { "size", "set segment size", OFFSET(size), AV_OPT_TYPE_INT, {.i64=256}, 2, 131072, AF }, { "algo", "set alghorithm", OFFSET(algo), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, AF, "algo" }, { "slow", "slow algorithm", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "algo" }, { "fast", "fast algorithm", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "algo" }, { NULL } }; AVFILTER_DEFINE_CLASS(axcorrelate); const AVFilter ff_af_axcorrelate = { .name = "axcorrelate", .description = NULL_IF_CONFIG_SMALL("Cross-correlate two audio streams."), .priv_size = sizeof(AudioXCorrelateContext), .priv_class = &axcorrelate_class, .query_formats = query_formats, .activate = activate, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), };