/* * Copyright (c) 2020 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DNN native backend implementation. */ #include "dnn_backend_native.h" #include "dnn_backend_native_layer_mathbinary.h" typedef float (*FunType)(float src0, float src1); static float sub(float src0, float src1) { return src0 - src1; } static float add(float src0, float src1) { return src0 + src1; } static float mul(float src0, float src1) { return src0 * src1; } static float realdiv(float src0, float src1) { return src0 / src1; } static float minimum(float src0, float src1) { return FFMIN(src0, src1); } static float floormod(float src0, float src1) { return (float)((int)(src0) % (int)(src1)); } static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) { int dims_count; const float *src; float *dst; dims_count = ff_calculate_operand_dims_count(output); src = input->data; dst = output->data; if (params->input0_broadcast || params->input1_broadcast) { for (int i = 0; i < dims_count; ++i) { dst[i] = pfun(params->v, src[i]); } } else { const DnnOperand *input1 = &operands[input_operand_indexes[1]]; const float *src1 = input1->data; for (int i = 0; i < dims_count; ++i) { dst[i] = pfun(src[i], src1[i]); } } } static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) { int dims_count; const float *src; float *dst; dims_count = ff_calculate_operand_dims_count(output); src = input->data; dst = output->data; if (params->input0_broadcast) { for (int i = 0; i < dims_count; ++i) { dst[i] = pfun(params->v, src[i]); } } else if (params->input1_broadcast) { for (int i = 0; i < dims_count; ++i) { dst[i] = pfun(src[i], params->v); } } else { const DnnOperand *input1 = &operands[input_operand_indexes[1]]; const float *src1 = input1->data; for (int i = 0; i < dims_count; ++i) { dst[i] = pfun(src[i], src1[i]); } } } int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) { DnnLayerMathBinaryParams params = { 0 }; int dnn_size = 0; int input_index = 0; params.bin_op = (int32_t)avio_rl32(model_file_context); dnn_size += 4; params.input0_broadcast = (int32_t)avio_rl32(model_file_context); dnn_size += 4; if (params.input0_broadcast) { params.v = av_int2float(avio_rl32(model_file_context)); } else { layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); if (layer->input_operand_indexes[input_index] >= operands_num) { return 0; } input_index++; } dnn_size += 4; params.input1_broadcast = (int32_t)avio_rl32(model_file_context); dnn_size += 4; if (params.input1_broadcast) { params.v = av_int2float(avio_rl32(model_file_context)); } else { layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); if (layer->input_operand_indexes[input_index] >= operands_num) { return 0; } input_index++; } dnn_size += 4; layer->output_operand_index = (int32_t)avio_rl32(model_file_context); dnn_size += 4; if (layer->output_operand_index >= operands_num) { return 0; } layer->params = av_memdup(¶ms, sizeof(params)); if (!layer->params) return 0; return dnn_size; } int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const void *parameters, NativeContext *ctx) { const DnnOperand *input = &operands[input_operand_indexes[0]]; DnnOperand *output = &operands[output_operand_index]; const DnnLayerMathBinaryParams *params = parameters; for (int i = 0; i < 4; ++i) output->dims[i] = input->dims[i]; output->data_type = input->data_type; output->length = ff_calculate_operand_data_length(output); if (output->length <= 0) { av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); return DNN_ERROR; } output->data = av_realloc(output->data, output->length); if (!output->data) { av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); return DNN_ERROR; } switch (params->bin_op) { case DMBO_SUB: math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes); return 0; case DMBO_ADD: math_binary_commutative(add, params, input, output, operands, input_operand_indexes); return 0; case DMBO_MUL: math_binary_commutative(mul, params, input, output, operands, input_operand_indexes); return 0; case DMBO_REALDIV: math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes); return 0; case DMBO_MINIMUM: math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes); return 0; case DMBO_FLOORMOD: math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes); return 0; default: av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n"); return DNN_ERROR; } }