/* * Copyright (c) 2018 Sergey Lavrushkin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DNN tensorflow backend implementation. */ #include "dnn_backend_tf.h" #include "dnn_backend_native.h" #include "dnn_backend_native_layer_conv2d.h" #include "dnn_backend_native_layer_depth2space.h" #include "libavformat/avio.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/cpu.h" #include "libavcodec/defs.h" #include "../internal.h" #include "dnn_backend_native_layer_pad.h" #include "dnn_backend_native_layer_maximum.h" #include "dnn_io_proc.h" #include "dnn_backend_common.h" #include "safe_queue.h" #include typedef struct TFOptions{ char *sess_config; uint8_t async; uint32_t nireq; } TFOptions; typedef struct TFContext { const AVClass *class; TFOptions options; } TFContext; typedef struct TFModel{ TFContext ctx; DNNModel *model; TF_Graph *graph; TF_Session *session; TF_Status *status; SafeQueue *request_queue; Queue *lltask_queue; Queue *task_queue; } TFModel; /** * Stores execution parameters for single * call to the TensorFlow C API */ typedef struct TFInferRequest { TF_Output *tf_outputs; TF_Tensor **output_tensors; TF_Output *tf_input; TF_Tensor *input_tensor; } TFInferRequest; typedef struct TFRequestItem { TFInferRequest *infer_request; LastLevelTaskItem *lltask; TF_Status *status; DNNAsyncExecModule exec_module; } TFRequestItem; #define OFFSET(x) offsetof(TFContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM static const AVOption dnn_tensorflow_options[] = { { "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, DNN_BACKEND_COMMON_OPTIONS { NULL } }; AVFILTER_DEFINE_CLASS(dnn_tensorflow); static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue); static void infer_completion_callback(void *args); static inline void destroy_request_item(TFRequestItem **arg); static void free_buffer(void *data, size_t length) { av_freep(&data); } /** * Free the contents of TensorFlow inference request. * It does not free the TFInferRequest instance. * * @param request pointer to TFInferRequest instance. * NULL pointer is allowed. */ static void tf_free_request(TFInferRequest *request) { if (!request) return; if (request->input_tensor) { TF_DeleteTensor(request->input_tensor); request->input_tensor = NULL; } av_freep(&request->tf_input); av_freep(&request->tf_outputs); if (request->output_tensors) { int nb_output = sizeof(*request->output_tensors)/sizeof(request->output_tensors[0]); for (uint32_t i = 0; i < nb_output; ++i) { if (request->output_tensors[i]) { TF_DeleteTensor(request->output_tensors[i]); request->output_tensors[i] = NULL; } } av_freep(&request->output_tensors); } } /** * Create a TensorFlow inference request. All properties * are initially unallocated and set as NULL. * * @return pointer to the allocated TFInferRequest instance. */ static TFInferRequest *tf_create_inference_request(void) { TFInferRequest *infer_request = av_malloc(sizeof(TFInferRequest)); if (!infer_request) { return NULL; } infer_request->tf_outputs = NULL; infer_request->tf_input = NULL; infer_request->input_tensor = NULL; infer_request->output_tensors = NULL; return infer_request; } /** * Start synchronous inference for the TensorFlow model. * * @param request pointer to the TFRequestItem for inference * @retval DNN_SUCCESS if execution is successful * @retval DNN_ERROR if execution fails */ static DNNReturnType tf_start_inference(void *args) { TFRequestItem *request = args; TFInferRequest *infer_request = request->infer_request; LastLevelTaskItem *lltask = request->lltask; TaskItem *task = lltask->task; TFModel *tf_model = task->model; if (!request) { av_log(&tf_model->ctx, AV_LOG_ERROR, "TFRequestItem is NULL\n"); return DNN_ERROR; } TF_SessionRun(tf_model->session, NULL, infer_request->tf_input, &infer_request->input_tensor, 1, infer_request->tf_outputs, infer_request->output_tensors, task->nb_output, NULL, 0, NULL, request->status); if (TF_GetCode(request->status) != TF_OK) { av_log(&tf_model->ctx, AV_LOG_ERROR, "%s", TF_Message(request->status)); tf_free_request(infer_request); if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { destroy_request_item(&request); } return DNN_ERROR; } return DNN_SUCCESS; } /** * Free the TFRequestItem completely. * * @param arg Address of the TFInferRequest instance. */ static inline void destroy_request_item(TFRequestItem **arg) { TFRequestItem *request; if (!arg) { return; } request = *arg; tf_free_request(request->infer_request); av_freep(&request->infer_request); av_freep(&request->lltask); TF_DeleteStatus(request->status); ff_dnn_async_module_cleanup(&request->exec_module); av_freep(arg); } static DNNReturnType extract_lltask_from_task(TaskItem *task, Queue *lltask_queue) { TFModel *tf_model = task->model; TFContext *ctx = &tf_model->ctx; LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask)); if (!lltask) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n"); return DNN_ERROR; } task->inference_todo = 1; task->inference_done = 0; lltask->task = task; if (ff_queue_push_back(lltask_queue, lltask) < 0) { av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n"); av_freep(&lltask); return DNN_ERROR; } return DNN_SUCCESS; } static TF_Buffer *read_graph(const char *model_filename) { TF_Buffer *graph_buf; unsigned char *graph_data = NULL; AVIOContext *model_file_context; long size, bytes_read; if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ return NULL; } size = avio_size(model_file_context); graph_data = av_malloc(size); if (!graph_data){ avio_closep(&model_file_context); return NULL; } bytes_read = avio_read(model_file_context, graph_data, size); avio_closep(&model_file_context); if (bytes_read != size){ av_freep(&graph_data); return NULL; } graph_buf = TF_NewBuffer(); graph_buf->data = graph_data; graph_buf->length = size; graph_buf->data_deallocator = free_buffer; return graph_buf; } static TF_Tensor *allocate_input_tensor(const DNNData *input) { TF_DataType dt; size_t size; int64_t input_dims[] = {1, input->height, input->width, input->channels}; switch (input->dt) { case DNN_FLOAT: dt = TF_FLOAT; size = sizeof(float); break; case DNN_UINT8: dt = TF_UINT8; size = 1; break; default: av_assert0(!"should not reach here"); } return TF_AllocateTensor(dt, input_dims, 4, input_dims[1] * input_dims[2] * input_dims[3] * size); } static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name) { TFModel *tf_model = model; TFContext *ctx = &tf_model->ctx; TF_Status *status; int64_t dims[4]; TF_Output tf_output; tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name); if (!tf_output.oper) { av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); return DNN_ERROR; } tf_output.index = 0; input->dt = TF_OperationOutputType(tf_output); input->order = DCO_RGB; status = TF_NewStatus(); TF_GraphGetTensorShape(tf_model->graph, tf_output, dims, 4, status); if (TF_GetCode(status) != TF_OK){ TF_DeleteStatus(status); av_log(ctx, AV_LOG_ERROR, "Failed to get input tensor shape: number of dimension incorrect\n"); return DNN_ERROR; } TF_DeleteStatus(status); // currently only NHWC is supported av_assert0(dims[0] == 1 || dims[0] == -1); input->height = dims[1]; input->width = dims[2]; input->channels = dims[3]; return DNN_SUCCESS; } static DNNReturnType get_output_tf(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height) { DNNReturnType ret; TFModel *tf_model = model; TFContext *ctx = &tf_model->ctx; TaskItem task; TFRequestItem *request; DNNExecBaseParams exec_params = { .input_name = input_name, .output_names = &output_name, .nb_output = 1, .in_frame = NULL, .out_frame = NULL, }; if (ff_dnn_fill_gettingoutput_task(&task, &exec_params, tf_model, input_height, input_width, ctx) != DNN_SUCCESS) { goto err; } if (extract_lltask_from_task(&task, tf_model->lltask_queue) != DNN_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); ret = DNN_ERROR; goto err; } request = ff_safe_queue_pop_front(tf_model->request_queue); if (!request) { av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); ret = DNN_ERROR; goto err; } ret = execute_model_tf(request, tf_model->lltask_queue); *output_width = task.out_frame->width; *output_height = task.out_frame->height; err: av_frame_free(&task.out_frame); av_frame_free(&task.in_frame); return ret; } #define SPACE_CHARS " \t\r\n" static int hex_to_data(uint8_t *data, const char *p) { int c, len, v; len = 0; v = 1; for (;;) { p += strspn(p, SPACE_CHARS); if (*p == '\0') break; c = av_toupper((unsigned char) *p++); if (c >= '0' && c <= '9') c = c - '0'; else if (c >= 'A' && c <= 'F') c = c - 'A' + 10; else break; v = (v << 4) | c; if (v & 0x100) { if (data) { data[len] = v; } len++; v = 1; } } return len; } static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename) { TFContext *ctx = &tf_model->ctx; TF_Buffer *graph_def; TF_ImportGraphDefOptions *graph_opts; TF_SessionOptions *sess_opts; const TF_Operation *init_op; uint8_t *sess_config = NULL; int sess_config_length = 0; // prepare the sess config data if (tf_model->ctx.options.sess_config != NULL) { const char *config; /* tf_model->ctx.options.sess_config is hex to present the serialized proto required by TF_SetConfig below, so we need to first generate the serialized proto in a python script, tools/python/tf_sess_config.py is a script example to generate the configs of sess_config. */ if (strncmp(tf_model->ctx.options.sess_config, "0x", 2) != 0) { av_log(ctx, AV_LOG_ERROR, "sess_config should start with '0x'\n"); return DNN_ERROR; } config = tf_model->ctx.options.sess_config + 2; sess_config_length = hex_to_data(NULL, config); sess_config = av_mallocz(sess_config_length + AV_INPUT_BUFFER_PADDING_SIZE); if (!sess_config) { av_log(ctx, AV_LOG_ERROR, "failed to allocate memory\n"); return DNN_ERROR; } if (hex_to_data(sess_config, config) < 0) { av_log(ctx, AV_LOG_ERROR, "failed to convert hex to data\n"); return DNN_ERROR; } } graph_def = read_graph(model_filename); if (!graph_def){ av_log(ctx, AV_LOG_ERROR, "Failed to read model \"%s\" graph\n", model_filename); av_freep(&sess_config); return DNN_ERROR; } tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); graph_opts = TF_NewImportGraphDefOptions(); TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); TF_DeleteImportGraphDefOptions(graph_opts); TF_DeleteBuffer(graph_def); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); av_log(ctx, AV_LOG_ERROR, "Failed to import serialized graph to model graph\n"); av_freep(&sess_config); return DNN_ERROR; } init_op = TF_GraphOperationByName(tf_model->graph, "init"); sess_opts = TF_NewSessionOptions(); if (sess_config) { TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->status); av_freep(&sess_config); if (TF_GetCode(tf_model->status) != TF_OK) { TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); TF_DeleteSessionOptions(sess_opts); av_log(ctx, AV_LOG_ERROR, "Failed to set config for sess options with %s\n", tf_model->ctx.options.sess_config); return DNN_ERROR; } } tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); TF_DeleteSessionOptions(sess_opts); if (TF_GetCode(tf_model->status) != TF_OK) { TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); av_log(ctx, AV_LOG_ERROR, "Failed to create new session with model graph\n"); return DNN_ERROR; } // Run initialization operation with name "init" if it is present in graph if (init_op){ TF_SessionRun(tf_model->session, NULL, NULL, NULL, 0, NULL, NULL, 0, &init_op, 1, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { TF_DeleteSession(tf_model->session, tf_model->status); TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); av_log(ctx, AV_LOG_ERROR, "Failed to run session when initializing\n"); return DNN_ERROR; } } return DNN_SUCCESS; } #define NAME_BUFFER_SIZE 256 static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, ConvolutionalParams* params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_OperationDescription *op_desc; TF_Output input; int64_t strides[] = {1, 1, 1, 1}; TF_Tensor *kernel_tensor = NULL, *biases_tensor = NULL; int64_t dims[4]; int dims_len; char name_buffer[NAME_BUFFER_SIZE]; int32_t size; size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; input.index = 0; snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims[1] = params->kernel_size; dims[2] = params->kernel_size; dims[3] = params->input_num; dims_len = 4; kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); memcpy(TF_TensorData(kernel_tensor), params->kernel, size * sizeof(float)); TF_SetAttrTensor(op_desc, "value", kernel_tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); input.oper = op; TF_AddInput(op_desc, input); input.oper = transpose_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tperm", TF_INT32); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrIntList(op_desc, "strides", strides, 4); TF_SetAttrString(op_desc, "padding", "VALID", 5); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims_len = 1; biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); memcpy(TF_TensorData(biases_tensor), params->biases, params->output_num * sizeof(float)); TF_SetAttrTensor(op_desc, "value", biases_tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); switch (params->activation){ case RELU: op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); break; case TANH: op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); break; case SIGMOID: op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); break; default: avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation); return DNN_ERROR; } input.oper = *cur_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ goto err; } return DNN_SUCCESS; err: TF_DeleteTensor(kernel_tensor); TF_DeleteTensor(biases_tensor); av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer); return DNN_ERROR; } static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, DepthToSpaceParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_OperationDescription *op_desc; TF_Output input; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrInt(op_desc, "block_size", params->block_size); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, LayerPadParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_Tensor *tensor; TF_OperationDescription *op_desc; TF_Output input; int32_t *pads; int64_t pads_shape[] = {4, 2}; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); pads = (int32_t *)TF_TensorData(tensor); pads[0] = params->paddings[0][0]; pads[1] = params->paddings[0][1]; pads[2] = params->paddings[1][0]; pads[3] = params->paddings[1][1]; pads[4] = params->paddings[2][0]; pads[5] = params->paddings[2][1]; pads[6] = params->paddings[3][0]; pads[7] = params->paddings[3][1]; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer); return DNN_ERROR; } op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, DnnLayerMaximumParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_Tensor *tensor; TF_OperationDescription *op_desc; TF_Output input; float *y; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); y = (float *)TF_TensorData(tensor); *y = params->val.y; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteTensor(tensor); av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename) { TFContext *ctx = &tf_model->ctx; int32_t layer; TF_OperationDescription *op_desc; TF_Operation *op; TF_Operation *transpose_op; TF_Tensor *tensor = NULL; TF_Output input; int32_t *transpose_perm; int64_t transpose_perm_shape[] = {4}; int64_t input_shape[] = {1, -1, -1, -1}; DNNReturnType layer_add_res; DNNModel *model = NULL; NativeModel *native_model; model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL); if (!model){ av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n"); return DNN_ERROR; } native_model = model->model; tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); #define CLEANUP_ON_ERROR(tf_model) \ { \ TF_DeleteTensor(tensor); \ TF_DeleteGraph(tf_model->graph); \ TF_DeleteStatus(tf_model->status); \ av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \ return DNN_ERROR; \ } op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); TF_SetAttrShape(op_desc, "shape", input_shape, 4); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); transpose_perm = (int32_t *)TF_TensorData(tensor); transpose_perm[0] = 1; transpose_perm[1] = 2; transpose_perm[2] = 3; transpose_perm[3] = 0; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } transpose_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } for (layer = 0; layer < native_model->layers_num; ++layer){ switch (native_model->layers[layer].type){ case DLT_INPUT: layer_add_res = DNN_SUCCESS; break; case DLT_CONV2D: layer_add_res = add_conv_layer(tf_model, transpose_op, &op, (ConvolutionalParams *)native_model->layers[layer].params, layer); break; case DLT_DEPTH_TO_SPACE: layer_add_res = add_depth_to_space_layer(tf_model, &op, (DepthToSpaceParams *)native_model->layers[layer].params, layer); break; case DLT_MIRROR_PAD: layer_add_res = add_pad_layer(tf_model, &op, (LayerPadParams *)native_model->layers[layer].params, layer); break; case DLT_MAXIMUM: layer_add_res = add_maximum_layer(tf_model, &op, (DnnLayerMaximumParams *)native_model->layers[layer].params, layer); break; default: CLEANUP_ON_ERROR(tf_model); } if (layer_add_res != DNN_SUCCESS){ CLEANUP_ON_ERROR(tf_model); } } op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); input.oper = op; input.index = 0; TF_AddInput(op_desc, input); TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } ff_dnn_free_model_native(&model); return DNN_SUCCESS; } DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) { DNNModel *model = NULL; TFModel *tf_model = NULL; TFContext *ctx = NULL; model = av_mallocz(sizeof(DNNModel)); if (!model){ return NULL; } tf_model = av_mallocz(sizeof(TFModel)); if (!tf_model){ av_freep(&model); return NULL; } tf_model->model = model; ctx = &tf_model->ctx; ctx->class = &dnn_tensorflow_class; //parse options av_opt_set_defaults(ctx); if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) { av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); goto err; } if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ goto err; } } if (ctx->options.nireq <= 0) { ctx->options.nireq = av_cpu_count() / 2 + 1; } #if !HAVE_PTHREAD_CANCEL if (ctx->options.async) { ctx->options.async = 0; av_log(filter_ctx, AV_LOG_WARNING, "pthread is not supported, roll back to sync.\n"); } #endif tf_model->request_queue = ff_safe_queue_create(); if (!tf_model->request_queue) { goto err; } for (int i = 0; i < ctx->options.nireq; i++) { TFRequestItem *item = av_mallocz(sizeof(*item)); if (!item) { goto err; } item->lltask = NULL; item->infer_request = tf_create_inference_request(); if (!item->infer_request) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for TensorFlow inference request\n"); av_freep(&item); goto err; } item->status = TF_NewStatus(); item->exec_module.start_inference = &tf_start_inference; item->exec_module.callback = &infer_completion_callback; item->exec_module.args = item; if (ff_safe_queue_push_back(tf_model->request_queue, item) < 0) { destroy_request_item(&item); goto err; } } tf_model->lltask_queue = ff_queue_create(); if (!tf_model->lltask_queue) { goto err; } tf_model->task_queue = ff_queue_create(); if (!tf_model->task_queue) { goto err; } model->model = tf_model; model->get_input = &get_input_tf; model->get_output = &get_output_tf; model->options = options; model->filter_ctx = filter_ctx; model->func_type = func_type; return model; err: ff_dnn_free_model_tf(&model); return NULL; } static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) { DNNData input; LastLevelTaskItem *lltask; TaskItem *task; TFInferRequest *infer_request; TFContext *ctx = &tf_model->ctx; lltask = ff_queue_pop_front(tf_model->lltask_queue); av_assert0(lltask); task = lltask->task; request->lltask = lltask; if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) { goto err; } infer_request = request->infer_request; input.height = task->in_frame->height; input.width = task->in_frame->width; infer_request->tf_input = av_malloc(sizeof(TF_Output)); if (!infer_request->tf_input) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); goto err; } infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name); if (!infer_request->tf_input->oper){ av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); goto err; } infer_request->tf_input->index = 0; infer_request->input_tensor = allocate_input_tensor(&input); if (!infer_request->input_tensor){ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); goto err; } input.data = (float *)TF_TensorData(infer_request->input_tensor); switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: if (task->do_ioproc) { if (tf_model->model->frame_pre_proc != NULL) { tf_model->model->frame_pre_proc(task->in_frame, &input, tf_model->model->filter_ctx); } else { ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); } } break; case DFT_ANALYTICS_DETECT: ff_frame_to_dnn_detect(task->in_frame, &input, ctx); break; default: avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type); break; } infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output)); if (infer_request->tf_outputs == NULL) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); goto err; } infer_request->output_tensors = av_calloc(task->nb_output, sizeof(*infer_request->output_tensors)); if (!infer_request->output_tensors) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); goto err; } for (int i = 0; i < task->nb_output; ++i) { infer_request->output_tensors[i] = NULL; infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]); if (!infer_request->tf_outputs[i].oper) { av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); goto err; } infer_request->tf_outputs[i].index = 0; } return DNN_SUCCESS; err: tf_free_request(infer_request); return DNN_ERROR; } static void infer_completion_callback(void *args) { TFRequestItem *request = args; LastLevelTaskItem *lltask = request->lltask; TaskItem *task = lltask->task; DNNData *outputs; TFInferRequest *infer_request = request->infer_request; TFModel *tf_model = task->model; TFContext *ctx = &tf_model->ctx; outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); if (!outputs) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); goto err; } for (uint32_t i = 0; i < task->nb_output; ++i) { outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1); outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2); outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3); outputs[i].data = TF_TensorData(infer_request->output_tensors[i]); outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]); } switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: //it only support 1 output if it's frame in & frame out if (task->do_ioproc) { if (tf_model->model->frame_post_proc != NULL) { tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx); } else { ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx); } } else { task->out_frame->width = outputs[0].width; task->out_frame->height = outputs[0].height; } break; case DFT_ANALYTICS_DETECT: if (!tf_model->model->detect_post_proc) { av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); return; } tf_model->model->detect_post_proc(task->in_frame, outputs, task->nb_output, tf_model->model->filter_ctx); break; default: av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); goto err; } task->inference_done++; err: tf_free_request(infer_request); av_freep(&outputs); if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { destroy_request_item(&request); av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); } } static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue) { TFModel *tf_model; TFContext *ctx; LastLevelTaskItem *lltask; TaskItem *task; if (ff_queue_size(lltask_queue) == 0) { destroy_request_item(&request); return DNN_SUCCESS; } lltask = ff_queue_peek_front(lltask_queue); task = lltask->task; tf_model = task->model; ctx = &tf_model->ctx; if (fill_model_input_tf(tf_model, request) != DNN_SUCCESS) { goto err; } if (task->async) { if (ff_dnn_start_inference_async(ctx, &request->exec_module) != DNN_SUCCESS) { goto err; } return DNN_SUCCESS; } else { if (tf_start_inference(request) != DNN_SUCCESS) { goto err; } infer_completion_callback(request); return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR; } err: tf_free_request(request->infer_request); if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { destroy_request_item(&request); } return DNN_ERROR; } DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params) { TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; TaskItem *task; TFRequestItem *request; if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) { return DNN_ERROR; } task = av_malloc(sizeof(*task)); if (!task) { av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n"); return DNN_ERROR; } if (ff_dnn_fill_task(task, exec_params, tf_model, ctx->options.async, 1) != DNN_SUCCESS) { av_freep(&task); return DNN_ERROR; } if (ff_queue_push_back(tf_model->task_queue, task) < 0) { av_freep(&task); av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); return DNN_ERROR; } if (extract_lltask_from_task(task, tf_model->lltask_queue) != DNN_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); return DNN_ERROR; } request = ff_safe_queue_pop_front(tf_model->request_queue); if (!request) { av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); return DNN_ERROR; } return execute_model_tf(request, tf_model->lltask_queue); } DNNAsyncStatusType ff_dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVFrame **out) { TFModel *tf_model = model->model; return ff_dnn_get_result_common(tf_model->task_queue, in, out); } DNNReturnType ff_dnn_flush_tf(const DNNModel *model) { TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; TFRequestItem *request; DNNReturnType ret; if (ff_queue_size(tf_model->lltask_queue) == 0) { // no pending task need to flush return DNN_SUCCESS; } request = ff_safe_queue_pop_front(tf_model->request_queue); if (!request) { av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); return DNN_ERROR; } ret = fill_model_input_tf(tf_model, request); if (ret != DNN_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to fill model input.\n"); if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { destroy_request_item(&request); } return ret; } return ff_dnn_start_inference_async(ctx, &request->exec_module); } void ff_dnn_free_model_tf(DNNModel **model) { TFModel *tf_model; if (*model){ tf_model = (*model)->model; while (ff_safe_queue_size(tf_model->request_queue) != 0) { TFRequestItem *item = ff_safe_queue_pop_front(tf_model->request_queue); destroy_request_item(&item); } ff_safe_queue_destroy(tf_model->request_queue); while (ff_queue_size(tf_model->lltask_queue) != 0) { LastLevelTaskItem *item = ff_queue_pop_front(tf_model->lltask_queue); av_freep(&item); } ff_queue_destroy(tf_model->lltask_queue); while (ff_queue_size(tf_model->task_queue) != 0) { TaskItem *item = ff_queue_pop_front(tf_model->task_queue); av_frame_free(&item->in_frame); av_frame_free(&item->out_frame); av_freep(&item); } ff_queue_destroy(tf_model->task_queue); if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } if (tf_model->status){ TF_DeleteStatus(tf_model->status); } av_freep(&tf_model); av_freep(model); } }