/* * Copyright (c) Lynne * * Power of two FFT: * Copyright (c) Lynne * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "mem.h" #define TABLE_DEF(name, size) \ DECLARE_ALIGNED(32, TXSample, TX_TAB(ff_tx_tab_ ##name))[size] #define SR_POW2_TABLES \ SR_TABLE(8) \ SR_TABLE(16) \ SR_TABLE(32) \ SR_TABLE(64) \ SR_TABLE(128) \ SR_TABLE(256) \ SR_TABLE(512) \ SR_TABLE(1024) \ SR_TABLE(2048) \ SR_TABLE(4096) \ SR_TABLE(8192) \ SR_TABLE(16384) \ SR_TABLE(32768) \ SR_TABLE(65536) \ SR_TABLE(131072) \ SR_TABLE(262144) \ SR_TABLE(524288) \ SR_TABLE(1048576) \ SR_TABLE(2097152) \ #define SR_TABLE(len) \ TABLE_DEF(len, len/4 + 1); /* Power of two tables */ SR_POW2_TABLES #undef SR_TABLE /* Other factors' tables */ TABLE_DEF(53, 12); TABLE_DEF( 7, 6); TABLE_DEF( 9, 8); typedef struct FFTabInitData { void (*func)(void); int factors[TX_MAX_SUB]; /* Must be sorted high -> low */ } FFTabInitData; #define SR_TABLE(len) \ static av_cold void TX_TAB(ff_tx_init_tab_ ##len)(void) \ { \ double freq = 2*M_PI/len; \ TXSample *tab = TX_TAB(ff_tx_tab_ ##len); \ \ for (int i = 0; i < len/4; i++) \ *tab++ = RESCALE(cos(i*freq)); \ \ *tab = 0; \ } SR_POW2_TABLES #undef SR_TABLE static void (*const sr_tabs_init_funcs[])(void) = { #define SR_TABLE(len) TX_TAB(ff_tx_init_tab_ ##len), SR_POW2_TABLES #undef SR_TABLE }; static AVOnce sr_tabs_init_once[] = { #define SR_TABLE(len) AV_ONCE_INIT, SR_POW2_TABLES #undef SR_TABLE }; static av_cold void TX_TAB(ff_tx_init_tab_53)(void) { /* 5pt, doubled to eliminate AVX lane shuffles */ TX_TAB(ff_tx_tab_53)[0] = RESCALE(cos(2 * M_PI / 5)); TX_TAB(ff_tx_tab_53)[1] = RESCALE(cos(2 * M_PI / 5)); TX_TAB(ff_tx_tab_53)[2] = RESCALE(cos(2 * M_PI / 10)); TX_TAB(ff_tx_tab_53)[3] = RESCALE(cos(2 * M_PI / 10)); TX_TAB(ff_tx_tab_53)[4] = RESCALE(sin(2 * M_PI / 5)); TX_TAB(ff_tx_tab_53)[5] = RESCALE(sin(2 * M_PI / 5)); TX_TAB(ff_tx_tab_53)[6] = RESCALE(sin(2 * M_PI / 10)); TX_TAB(ff_tx_tab_53)[7] = RESCALE(sin(2 * M_PI / 10)); /* 3pt */ TX_TAB(ff_tx_tab_53)[ 8] = RESCALE(cos(2 * M_PI / 12)); TX_TAB(ff_tx_tab_53)[ 9] = RESCALE(cos(2 * M_PI / 12)); TX_TAB(ff_tx_tab_53)[10] = RESCALE(cos(2 * M_PI / 6)); TX_TAB(ff_tx_tab_53)[11] = RESCALE(cos(8 * M_PI / 6)); } static av_cold void TX_TAB(ff_tx_init_tab_7)(void) { TX_TAB(ff_tx_tab_7)[0] = RESCALE(cos(2 * M_PI / 7)); TX_TAB(ff_tx_tab_7)[1] = RESCALE(sin(2 * M_PI / 7)); TX_TAB(ff_tx_tab_7)[2] = RESCALE(sin(2 * M_PI / 28)); TX_TAB(ff_tx_tab_7)[3] = RESCALE(cos(2 * M_PI / 28)); TX_TAB(ff_tx_tab_7)[4] = RESCALE(cos(2 * M_PI / 14)); TX_TAB(ff_tx_tab_7)[5] = RESCALE(sin(2 * M_PI / 14)); } static av_cold void TX_TAB(ff_tx_init_tab_9)(void) { TX_TAB(ff_tx_tab_9)[0] = RESCALE(cos(2 * M_PI / 3)); TX_TAB(ff_tx_tab_9)[1] = RESCALE(sin(2 * M_PI / 3)); TX_TAB(ff_tx_tab_9)[2] = RESCALE(cos(2 * M_PI / 9)); TX_TAB(ff_tx_tab_9)[3] = RESCALE(sin(2 * M_PI / 9)); TX_TAB(ff_tx_tab_9)[4] = RESCALE(cos(2 * M_PI / 36)); TX_TAB(ff_tx_tab_9)[5] = RESCALE(sin(2 * M_PI / 36)); TX_TAB(ff_tx_tab_9)[6] = TX_TAB(ff_tx_tab_9)[2] + TX_TAB(ff_tx_tab_9)[5]; TX_TAB(ff_tx_tab_9)[7] = TX_TAB(ff_tx_tab_9)[3] - TX_TAB(ff_tx_tab_9)[4]; } static const FFTabInitData nptwo_tabs_init_data[] = { { TX_TAB(ff_tx_init_tab_53), { 15, 5, 3 } }, { TX_TAB(ff_tx_init_tab_9), { 9 } }, { TX_TAB(ff_tx_init_tab_7), { 7 } }, }; static AVOnce nptwo_tabs_init_once[] = { AV_ONCE_INIT, AV_ONCE_INIT, AV_ONCE_INIT, }; av_cold void TX_TAB(ff_tx_init_tabs)(int len) { int factor_2 = ff_ctz(len); if (factor_2) { int idx = factor_2 - 3; for (int i = 0; i <= idx; i++) ff_thread_once(&sr_tabs_init_once[i], sr_tabs_init_funcs[i]); len >>= factor_2; } for (int i = 0; i < FF_ARRAY_ELEMS(nptwo_tabs_init_data); i++) { int f, f_idx = 0; if (len <= 1) return; while ((f = nptwo_tabs_init_data[i].factors[f_idx++])) { if (f % len) continue; ff_thread_once(&nptwo_tabs_init_once[i], nptwo_tabs_init_data[i].func); len /= f; break; } } } static av_always_inline void fft3(TXComplex *out, TXComplex *in, ptrdiff_t stride) { TXComplex tmp[3]; const TXSample *tab = TX_TAB(ff_tx_tab_53); #ifdef TX_INT32 int64_t mtmp[4]; #endif tmp[0] = in[0]; BF(tmp[1].re, tmp[2].im, in[1].im, in[2].im); BF(tmp[1].im, tmp[2].re, in[1].re, in[2].re); #ifdef TX_INT32 out[0*stride].re = (int64_t)tmp[0].re + tmp[2].re; out[0*stride].im = (int64_t)tmp[0].im + tmp[2].im; mtmp[0] = (int64_t)tab[ 8] * tmp[1].re; mtmp[1] = (int64_t)tab[ 9] * tmp[1].im; mtmp[2] = (int64_t)tab[10] * tmp[2].re; mtmp[3] = (int64_t)tab[10] * tmp[2].im; out[1*stride].re = tmp[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31); out[1*stride].im = tmp[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31); out[2*stride].re = tmp[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31); out[2*stride].im = tmp[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31); #else out[0*stride].re = tmp[0].re + tmp[2].re; out[0*stride].im = tmp[0].im + tmp[2].im; tmp[1].re = tab[ 8] * tmp[1].re; tmp[1].im = tab[ 9] * tmp[1].im; tmp[2].re = tab[10] * tmp[2].re; tmp[2].im = tab[10] * tmp[2].im; out[1*stride].re = tmp[0].re - tmp[2].re + tmp[1].re; out[1*stride].im = tmp[0].im - tmp[2].im - tmp[1].im; out[2*stride].re = tmp[0].re - tmp[2].re - tmp[1].re; out[2*stride].im = tmp[0].im - tmp[2].im + tmp[1].im; #endif } #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ static av_always_inline void NAME(TXComplex *out, TXComplex *in, \ ptrdiff_t stride) \ { \ TXComplex dc, z0[4], t[6]; \ const TXSample *tab = TX_TAB(ff_tx_tab_53); \ \ dc = in[0]; \ BF(t[1].im, t[0].re, in[1].re, in[4].re); \ BF(t[1].re, t[0].im, in[1].im, in[4].im); \ BF(t[3].im, t[2].re, in[2].re, in[3].re); \ BF(t[3].re, t[2].im, in[2].im, in[3].im); \ \ out[D0*stride].re = dc.re + (TXUSample)t[0].re + t[2].re; \ out[D0*stride].im = dc.im + (TXUSample)t[0].im + t[2].im; \ \ SMUL(t[4].re, t[0].re, tab[0], tab[2], t[2].re, t[0].re); \ SMUL(t[4].im, t[0].im, tab[0], tab[2], t[2].im, t[0].im); \ CMUL(t[5].re, t[1].re, tab[4], tab[6], t[3].re, t[1].re); \ CMUL(t[5].im, t[1].im, tab[4], tab[6], t[3].im, t[1].im); \ \ BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \ BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \ BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \ BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \ \ out[D1*stride].re = dc.re + (TXUSample)z0[3].re; \ out[D1*stride].im = dc.im + (TXUSample)z0[0].im; \ out[D2*stride].re = dc.re + (TXUSample)z0[2].re; \ out[D2*stride].im = dc.im + (TXUSample)z0[1].im; \ out[D3*stride].re = dc.re + (TXUSample)z0[1].re; \ out[D3*stride].im = dc.im + (TXUSample)z0[2].im; \ out[D4*stride].re = dc.re + (TXUSample)z0[0].re; \ out[D4*stride].im = dc.im + (TXUSample)z0[3].im; \ } DECL_FFT5(fft5, 0, 1, 2, 3, 4) DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) static av_always_inline void fft7(TXComplex *out, TXComplex *in, ptrdiff_t stride) { TXComplex dc, t[6], z[3]; const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_7); #ifdef TX_INT32 int64_t mtmp[12]; #endif dc = in[0]; BF(t[1].re, t[0].re, in[1].re, in[6].re); BF(t[1].im, t[0].im, in[1].im, in[6].im); BF(t[3].re, t[2].re, in[2].re, in[5].re); BF(t[3].im, t[2].im, in[2].im, in[5].im); BF(t[5].re, t[4].re, in[3].re, in[4].re); BF(t[5].im, t[4].im, in[3].im, in[4].im); out[0*stride].re = dc.re + t[0].re + t[2].re + t[4].re; out[0*stride].im = dc.im + t[0].im + t[2].im + t[4].im; #ifdef TX_INT32 /* NOTE: it's possible to do this with 16 mults but 72 adds */ mtmp[ 0] = ((int64_t)tab[0].re)*t[0].re - ((int64_t)tab[2].re)*t[4].re; mtmp[ 1] = ((int64_t)tab[0].re)*t[4].re - ((int64_t)tab[1].re)*t[0].re; mtmp[ 2] = ((int64_t)tab[0].re)*t[2].re - ((int64_t)tab[2].re)*t[0].re; mtmp[ 3] = ((int64_t)tab[0].re)*t[0].im - ((int64_t)tab[1].re)*t[2].im; mtmp[ 4] = ((int64_t)tab[0].re)*t[4].im - ((int64_t)tab[1].re)*t[0].im; mtmp[ 5] = ((int64_t)tab[0].re)*t[2].im - ((int64_t)tab[2].re)*t[0].im; mtmp[ 6] = ((int64_t)tab[2].im)*t[1].im + ((int64_t)tab[1].im)*t[5].im; mtmp[ 7] = ((int64_t)tab[0].im)*t[5].im + ((int64_t)tab[2].im)*t[3].im; mtmp[ 8] = ((int64_t)tab[2].im)*t[5].im + ((int64_t)tab[1].im)*t[3].im; mtmp[ 9] = ((int64_t)tab[0].im)*t[1].re + ((int64_t)tab[1].im)*t[3].re; mtmp[10] = ((int64_t)tab[2].im)*t[3].re + ((int64_t)tab[0].im)*t[5].re; mtmp[11] = ((int64_t)tab[2].im)*t[1].re + ((int64_t)tab[1].im)*t[5].re; z[0].re = (int32_t)(mtmp[ 0] - ((int64_t)tab[1].re)*t[2].re + 0x40000000 >> 31); z[1].re = (int32_t)(mtmp[ 1] - ((int64_t)tab[2].re)*t[2].re + 0x40000000 >> 31); z[2].re = (int32_t)(mtmp[ 2] - ((int64_t)tab[1].re)*t[4].re + 0x40000000 >> 31); z[0].im = (int32_t)(mtmp[ 3] - ((int64_t)tab[2].re)*t[4].im + 0x40000000 >> 31); z[1].im = (int32_t)(mtmp[ 4] - ((int64_t)tab[2].re)*t[2].im + 0x40000000 >> 31); z[2].im = (int32_t)(mtmp[ 5] - ((int64_t)tab[1].re)*t[4].im + 0x40000000 >> 31); t[0].re = (int32_t)(mtmp[ 6] - ((int64_t)tab[0].im)*t[3].im + 0x40000000 >> 31); t[2].re = (int32_t)(mtmp[ 7] - ((int64_t)tab[1].im)*t[1].im + 0x40000000 >> 31); t[4].re = (int32_t)(mtmp[ 8] + ((int64_t)tab[0].im)*t[1].im + 0x40000000 >> 31); t[0].im = (int32_t)(mtmp[ 9] + ((int64_t)tab[2].im)*t[5].re + 0x40000000 >> 31); t[2].im = (int32_t)(mtmp[10] - ((int64_t)tab[1].im)*t[1].re + 0x40000000 >> 31); t[4].im = (int32_t)(mtmp[11] - ((int64_t)tab[0].im)*t[3].re + 0x40000000 >> 31); #else z[0].re = tab[0].re*t[0].re - tab[2].re*t[4].re - tab[1].re*t[2].re; z[1].re = tab[0].re*t[4].re - tab[1].re*t[0].re - tab[2].re*t[2].re; z[2].re = tab[0].re*t[2].re - tab[2].re*t[0].re - tab[1].re*t[4].re; z[0].im = tab[0].re*t[0].im - tab[1].re*t[2].im - tab[2].re*t[4].im; z[1].im = tab[0].re*t[4].im - tab[1].re*t[0].im - tab[2].re*t[2].im; z[2].im = tab[0].re*t[2].im - tab[2].re*t[0].im - tab[1].re*t[4].im; /* It's possible to do t[4].re and t[0].im with 2 multiplies only by * multiplying the sum of all with the average of the twiddles */ t[0].re = tab[2].im*t[1].im + tab[1].im*t[5].im - tab[0].im*t[3].im; t[2].re = tab[0].im*t[5].im + tab[2].im*t[3].im - tab[1].im*t[1].im; t[4].re = tab[2].im*t[5].im + tab[1].im*t[3].im + tab[0].im*t[1].im; t[0].im = tab[0].im*t[1].re + tab[1].im*t[3].re + tab[2].im*t[5].re; t[2].im = tab[2].im*t[3].re + tab[0].im*t[5].re - tab[1].im*t[1].re; t[4].im = tab[2].im*t[1].re + tab[1].im*t[5].re - tab[0].im*t[3].re; #endif BF(t[1].re, z[0].re, z[0].re, t[4].re); BF(t[3].re, z[1].re, z[1].re, t[2].re); BF(t[5].re, z[2].re, z[2].re, t[0].re); BF(t[1].im, z[0].im, z[0].im, t[0].im); BF(t[3].im, z[1].im, z[1].im, t[2].im); BF(t[5].im, z[2].im, z[2].im, t[4].im); out[1*stride].re = dc.re + z[0].re; out[1*stride].im = dc.im + t[1].im; out[2*stride].re = dc.re + t[3].re; out[2*stride].im = dc.im + z[1].im; out[3*stride].re = dc.re + z[2].re; out[3*stride].im = dc.im + t[5].im; out[4*stride].re = dc.re + t[5].re; out[4*stride].im = dc.im + z[2].im; out[5*stride].re = dc.re + z[1].re; out[5*stride].im = dc.im + t[3].im; out[6*stride].re = dc.re + t[1].re; out[6*stride].im = dc.im + z[0].im; } static av_always_inline void fft9(TXComplex *out, TXComplex *in, ptrdiff_t stride) { const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_9); TXComplex dc, t[16], w[4], x[5], y[5], z[2]; #ifdef TX_INT32 int64_t mtmp[12]; #endif dc = in[0]; BF(t[1].re, t[0].re, in[1].re, in[8].re); BF(t[1].im, t[0].im, in[1].im, in[8].im); BF(t[3].re, t[2].re, in[2].re, in[7].re); BF(t[3].im, t[2].im, in[2].im, in[7].im); BF(t[5].re, t[4].re, in[3].re, in[6].re); BF(t[5].im, t[4].im, in[3].im, in[6].im); BF(t[7].re, t[6].re, in[4].re, in[5].re); BF(t[7].im, t[6].im, in[4].im, in[5].im); w[0].re = t[0].re - t[6].re; w[0].im = t[0].im - t[6].im; w[1].re = t[2].re - t[6].re; w[1].im = t[2].im - t[6].im; w[2].re = t[1].re - t[7].re; w[2].im = t[1].im - t[7].im; w[3].re = t[3].re + t[7].re; w[3].im = t[3].im + t[7].im; z[0].re = dc.re + t[4].re; z[0].im = dc.im + t[4].im; z[1].re = t[0].re + t[2].re + t[6].re; z[1].im = t[0].im + t[2].im + t[6].im; out[0*stride].re = z[0].re + z[1].re; out[0*stride].im = z[0].im + z[1].im; #ifdef TX_INT32 mtmp[0] = t[1].re - t[3].re + t[7].re; mtmp[1] = t[1].im - t[3].im + t[7].im; y[3].re = (int32_t)(((int64_t)tab[0].im)*mtmp[0] + 0x40000000 >> 31); y[3].im = (int32_t)(((int64_t)tab[0].im)*mtmp[1] + 0x40000000 >> 31); mtmp[0] = (int32_t)(((int64_t)tab[0].re)*z[1].re + 0x40000000 >> 31); mtmp[1] = (int32_t)(((int64_t)tab[0].re)*z[1].im + 0x40000000 >> 31); mtmp[2] = (int32_t)(((int64_t)tab[0].re)*t[4].re + 0x40000000 >> 31); mtmp[3] = (int32_t)(((int64_t)tab[0].re)*t[4].im + 0x40000000 >> 31); x[3].re = z[0].re + (int32_t)mtmp[0]; x[3].im = z[0].im + (int32_t)mtmp[1]; z[0].re = in[0].re + (int32_t)mtmp[2]; z[0].im = in[0].im + (int32_t)mtmp[3]; mtmp[0] = ((int64_t)tab[1].re)*w[0].re; mtmp[1] = ((int64_t)tab[1].re)*w[0].im; mtmp[2] = ((int64_t)tab[2].im)*w[0].re; mtmp[3] = ((int64_t)tab[2].im)*w[0].im; mtmp[4] = ((int64_t)tab[1].im)*w[2].re; mtmp[5] = ((int64_t)tab[1].im)*w[2].im; mtmp[6] = ((int64_t)tab[2].re)*w[2].re; mtmp[7] = ((int64_t)tab[2].re)*w[2].im; x[1].re = (int32_t)(mtmp[0] + ((int64_t)tab[2].im)*w[1].re + 0x40000000 >> 31); x[1].im = (int32_t)(mtmp[1] + ((int64_t)tab[2].im)*w[1].im + 0x40000000 >> 31); x[2].re = (int32_t)(mtmp[2] - ((int64_t)tab[3].re)*w[1].re + 0x40000000 >> 31); x[2].im = (int32_t)(mtmp[3] - ((int64_t)tab[3].re)*w[1].im + 0x40000000 >> 31); y[1].re = (int32_t)(mtmp[4] + ((int64_t)tab[2].re)*w[3].re + 0x40000000 >> 31); y[1].im = (int32_t)(mtmp[5] + ((int64_t)tab[2].re)*w[3].im + 0x40000000 >> 31); y[2].re = (int32_t)(mtmp[6] - ((int64_t)tab[3].im)*w[3].re + 0x40000000 >> 31); y[2].im = (int32_t)(mtmp[7] - ((int64_t)tab[3].im)*w[3].im + 0x40000000 >> 31); y[0].re = (int32_t)(((int64_t)tab[0].im)*t[5].re + 0x40000000 >> 31); y[0].im = (int32_t)(((int64_t)tab[0].im)*t[5].im + 0x40000000 >> 31); #else y[3].re = tab[0].im*(t[1].re - t[3].re + t[7].re); y[3].im = tab[0].im*(t[1].im - t[3].im + t[7].im); x[3].re = z[0].re + tab[0].re*z[1].re; x[3].im = z[0].im + tab[0].re*z[1].im; z[0].re = dc.re + tab[0].re*t[4].re; z[0].im = dc.im + tab[0].re*t[4].im; x[1].re = tab[1].re*w[0].re + tab[2].im*w[1].re; x[1].im = tab[1].re*w[0].im + tab[2].im*w[1].im; x[2].re = tab[2].im*w[0].re - tab[3].re*w[1].re; x[2].im = tab[2].im*w[0].im - tab[3].re*w[1].im; y[1].re = tab[1].im*w[2].re + tab[2].re*w[3].re; y[1].im = tab[1].im*w[2].im + tab[2].re*w[3].im; y[2].re = tab[2].re*w[2].re - tab[3].im*w[3].re; y[2].im = tab[2].re*w[2].im - tab[3].im*w[3].im; y[0].re = tab[0].im*t[5].re; y[0].im = tab[0].im*t[5].im; #endif x[4].re = x[1].re + x[2].re; x[4].im = x[1].im + x[2].im; y[4].re = y[1].re - y[2].re; y[4].im = y[1].im - y[2].im; x[1].re = z[0].re + x[1].re; x[1].im = z[0].im + x[1].im; y[1].re = y[0].re + y[1].re; y[1].im = y[0].im + y[1].im; x[2].re = z[0].re + x[2].re; x[2].im = z[0].im + x[2].im; y[2].re = y[2].re - y[0].re; y[2].im = y[2].im - y[0].im; x[4].re = z[0].re - x[4].re; x[4].im = z[0].im - x[4].im; y[4].re = y[0].re - y[4].re; y[4].im = y[0].im - y[4].im; out[1*stride] = (TXComplex){ x[1].re + y[1].im, x[1].im - y[1].re }; out[2*stride] = (TXComplex){ x[2].re + y[2].im, x[2].im - y[2].re }; out[3*stride] = (TXComplex){ x[3].re + y[3].im, x[3].im - y[3].re }; out[4*stride] = (TXComplex){ x[4].re + y[4].im, x[4].im - y[4].re }; out[5*stride] = (TXComplex){ x[4].re - y[4].im, x[4].im + y[4].re }; out[6*stride] = (TXComplex){ x[3].re - y[3].im, x[3].im + y[3].re }; out[7*stride] = (TXComplex){ x[2].re - y[2].im, x[2].im + y[2].re }; out[8*stride] = (TXComplex){ x[1].re - y[1].im, x[1].im + y[1].re }; } static av_always_inline void fft15(TXComplex *out, TXComplex *in, ptrdiff_t stride) { TXComplex tmp[15]; for (int i = 0; i < 5; i++) fft3(tmp + i, in + i*3, 5); fft5_m1(out, tmp + 0, stride); fft5_m2(out, tmp + 5, stride); fft5_m3(out, tmp + 10, stride); } static av_cold int TX_NAME(ff_tx_fft_factor_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret = 0; TX_TAB(ff_tx_init_tabs)(len); if (len == 15) ret = ff_tx_gen_pfa_input_map(s, opts, 3, 5); else if (flags & FF_TX_PRESHUFFLE) ret = ff_tx_gen_default_map(s, opts); return ret; } #define DECL_FACTOR_S(n) \ static void TX_NAME(ff_tx_fft##n)(AVTXContext *s, void *dst, \ void *src, ptrdiff_t stride) \ { \ fft##n((TXComplex *)dst, (TXComplex *)src, stride / sizeof(TXComplex)); \ } \ static const FFTXCodelet TX_NAME(ff_tx_fft##n##_ns_def) = { \ .name = TX_NAME_STR("fft" #n "_ns"), \ .function = TX_NAME(ff_tx_fft##n), \ .type = TX_TYPE(FFT), \ .flags = AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \ AV_TX_UNALIGNED | FF_TX_PRESHUFFLE, \ .factors[0] = n, \ .nb_factors = 1, \ .min_len = n, \ .max_len = n, \ .init = TX_NAME(ff_tx_fft_factor_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; #define DECL_FACTOR_F(n) \ DECL_FACTOR_S(n) \ static const FFTXCodelet TX_NAME(ff_tx_fft##n##_fwd_def) = { \ .name = TX_NAME_STR("fft" #n "_fwd"), \ .function = TX_NAME(ff_tx_fft##n), \ .type = TX_TYPE(FFT), \ .flags = AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \ AV_TX_UNALIGNED | FF_TX_FORWARD_ONLY, \ .factors[0] = n, \ .nb_factors = 1, \ .min_len = n, \ .max_len = n, \ .init = TX_NAME(ff_tx_fft_factor_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; DECL_FACTOR_F(3) DECL_FACTOR_F(5) DECL_FACTOR_F(7) DECL_FACTOR_F(9) DECL_FACTOR_S(15) #define BUTTERFLIES(a0, a1, a2, a3) \ do { \ r0=a0.re; \ i0=a0.im; \ r1=a1.re; \ i1=a1.im; \ BF(t3, t5, t5, t1); \ BF(a2.re, a0.re, r0, t5); \ BF(a3.im, a1.im, i1, t3); \ BF(t4, t6, t2, t6); \ BF(a3.re, a1.re, r1, t4); \ BF(a2.im, a0.im, i0, t6); \ } while (0) #define TRANSFORM(a0, a1, a2, a3, wre, wim) \ do { \ CMUL(t1, t2, a2.re, a2.im, wre, -wim); \ CMUL(t5, t6, a3.re, a3.im, wre, wim); \ BUTTERFLIES(a0, a1, a2, a3); \ } while (0) /* z[0...8n-1], w[1...2n-1] */ static inline void TX_NAME(ff_tx_fft_sr_combine)(TXComplex *z, const TXSample *cos, int len) { int o1 = 2*len; int o2 = 4*len; int o3 = 6*len; const TXSample *wim = cos + o1 - 7; TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; for (int i = 0; i < len; i += 4) { TRANSFORM(z[0], z[o1 + 0], z[o2 + 0], z[o3 + 0], cos[0], wim[7]); TRANSFORM(z[2], z[o1 + 2], z[o2 + 2], z[o3 + 2], cos[2], wim[5]); TRANSFORM(z[4], z[o1 + 4], z[o2 + 4], z[o3 + 4], cos[4], wim[3]); TRANSFORM(z[6], z[o1 + 6], z[o2 + 6], z[o3 + 6], cos[6], wim[1]); TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], cos[1], wim[6]); TRANSFORM(z[3], z[o1 + 3], z[o2 + 3], z[o3 + 3], cos[3], wim[4]); TRANSFORM(z[5], z[o1 + 5], z[o2 + 5], z[o3 + 5], cos[5], wim[2]); TRANSFORM(z[7], z[o1 + 7], z[o2 + 7], z[o3 + 7], cos[7], wim[0]); z += 2*4; cos += 2*4; wim -= 2*4; } } static av_cold int TX_NAME(ff_tx_fft_sr_codelet_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { TX_TAB(ff_tx_init_tabs)(len); return ff_tx_gen_ptwo_revtab(s, opts); } #define DECL_SR_CODELET_DEF(n) \ static const FFTXCodelet TX_NAME(ff_tx_fft##n##_ns_def) = { \ .name = TX_NAME_STR("fft" #n "_ns"), \ .function = TX_NAME(ff_tx_fft##n##_ns), \ .type = TX_TYPE(FFT), \ .flags = FF_TX_OUT_OF_PLACE | AV_TX_INPLACE | \ AV_TX_UNALIGNED | FF_TX_PRESHUFFLE, \ .factors[0] = 2, \ .nb_factors = 1, \ .min_len = n, \ .max_len = n, \ .init = TX_NAME(ff_tx_fft_sr_codelet_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; #define DECL_SR_CODELET(n, n2, n4) \ static void TX_NAME(ff_tx_fft##n##_ns)(AVTXContext *s, void *_dst, \ void *_src, ptrdiff_t stride) \ { \ TXComplex *src = _src; \ TXComplex *dst = _dst; \ const TXSample *cos = TX_TAB(ff_tx_tab_##n); \ \ TX_NAME(ff_tx_fft##n2##_ns)(s, dst, src, stride); \ TX_NAME(ff_tx_fft##n4##_ns)(s, dst + n4*2, src + n4*2, stride); \ TX_NAME(ff_tx_fft##n4##_ns)(s, dst + n4*3, src + n4*3, stride); \ TX_NAME(ff_tx_fft_sr_combine)(dst, cos, n4 >> 1); \ } \ \ DECL_SR_CODELET_DEF(n) static void TX_NAME(ff_tx_fft2_ns)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; TXComplex tmp; BF(tmp.re, dst[0].re, src[0].re, src[1].re); BF(tmp.im, dst[0].im, src[0].im, src[1].im); dst[1] = tmp; } static void TX_NAME(ff_tx_fft4_ns)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; TXSample t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, src[0].re, src[1].re); BF(t8, t6, src[3].re, src[2].re); BF(dst[2].re, dst[0].re, t1, t6); BF(t4, t2, src[0].im, src[1].im); BF(t7, t5, src[2].im, src[3].im); BF(dst[3].im, dst[1].im, t4, t8); BF(dst[3].re, dst[1].re, t3, t7); BF(dst[2].im, dst[0].im, t2, t5); } static void TX_NAME(ff_tx_fft8_ns)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; const TXSample cos = TX_TAB(ff_tx_tab_8)[1]; TX_NAME(ff_tx_fft4_ns)(s, dst, src, stride); BF(t1, dst[5].re, src[4].re, -src[5].re); BF(t2, dst[5].im, src[4].im, -src[5].im); BF(t5, dst[7].re, src[6].re, -src[7].re); BF(t6, dst[7].im, src[6].im, -src[7].im); BUTTERFLIES(dst[0], dst[2], dst[4], dst[6]); TRANSFORM(dst[1], dst[3], dst[5], dst[7], cos, cos); } static void TX_NAME(ff_tx_fft16_ns)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; const TXSample *cos = TX_TAB(ff_tx_tab_16); TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; TXSample cos_16_1 = cos[1]; TXSample cos_16_2 = cos[2]; TXSample cos_16_3 = cos[3]; TX_NAME(ff_tx_fft8_ns)(s, dst + 0, src + 0, stride); TX_NAME(ff_tx_fft4_ns)(s, dst + 8, src + 8, stride); TX_NAME(ff_tx_fft4_ns)(s, dst + 12, src + 12, stride); t1 = dst[ 8].re; t2 = dst[ 8].im; t5 = dst[12].re; t6 = dst[12].im; BUTTERFLIES(dst[0], dst[4], dst[8], dst[12]); TRANSFORM(dst[ 2], dst[ 6], dst[10], dst[14], cos_16_2, cos_16_2); TRANSFORM(dst[ 1], dst[ 5], dst[ 9], dst[13], cos_16_1, cos_16_3); TRANSFORM(dst[ 3], dst[ 7], dst[11], dst[15], cos_16_3, cos_16_1); } DECL_SR_CODELET_DEF(2) DECL_SR_CODELET_DEF(4) DECL_SR_CODELET_DEF(8) DECL_SR_CODELET_DEF(16) DECL_SR_CODELET(32,16,8) DECL_SR_CODELET(64,32,16) DECL_SR_CODELET(128,64,32) DECL_SR_CODELET(256,128,64) DECL_SR_CODELET(512,256,128) DECL_SR_CODELET(1024,512,256) DECL_SR_CODELET(2048,1024,512) DECL_SR_CODELET(4096,2048,1024) DECL_SR_CODELET(8192,4096,2048) DECL_SR_CODELET(16384,8192,4096) DECL_SR_CODELET(32768,16384,8192) DECL_SR_CODELET(65536,32768,16384) DECL_SR_CODELET(131072,65536,32768) DECL_SR_CODELET(262144,131072,65536) DECL_SR_CODELET(524288,262144,131072) DECL_SR_CODELET(1048576,524288,262144) DECL_SR_CODELET(2097152,1048576,524288) static av_cold int TX_NAME(ff_tx_fft_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; int is_inplace = !!(flags & AV_TX_INPLACE); FFTXCodeletOptions sub_opts = { .map_dir = is_inplace ? FF_TX_MAP_SCATTER : FF_TX_MAP_GATHER, }; flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ flags |= AV_TX_INPLACE; /* in-place */ flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len, inv, scale))) return ret; if (is_inplace && (ret = ff_tx_gen_inplace_map(s, len))) return ret; return 0; } static av_cold int TX_NAME(ff_tx_fft_inplace_small_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { if (!(s->tmp = av_malloc(len*sizeof(*s->tmp)))) return AVERROR(ENOMEM); flags &= ~AV_TX_INPLACE; return TX_NAME(ff_tx_fft_init)(s, cd, flags, opts, len, inv, scale); } static void TX_NAME(ff_tx_fft)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst1 = s->flags & AV_TX_INPLACE ? s->tmp : _dst; TXComplex *dst2 = _dst; int *map = s->sub[0].map; int len = s->len; /* Compilers can't vectorize this anyway without assuming AVX2, which they * generally don't, at least without -march=native -mtune=native */ for (int i = 0; i < len; i++) dst1[i] = src[map[i]]; s->fn[0](&s->sub[0], dst2, dst1, stride); } static void TX_NAME(ff_tx_fft_inplace)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; TXComplex tmp; const int *map = s->sub->map; const int *inplace_idx = s->map; int src_idx, dst_idx; src_idx = *inplace_idx++; do { tmp = src[src_idx]; dst_idx = map[src_idx]; do { FFSWAP(TXComplex, tmp, src[dst_idx]); dst_idx = map[dst_idx]; } while (dst_idx != src_idx); /* Can be > as well, but was less predictable */ src[dst_idx] = tmp; } while ((src_idx = *inplace_idx++)); s->fn[0](&s->sub[0], dst, src, stride); } static const FFTXCodelet TX_NAME(ff_tx_fft_def) = { .name = TX_NAME_STR("fft"), .function = TX_NAME(ff_tx_fft), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, .factors[0] = TX_FACTOR_ANY, .nb_factors = 1, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_fft_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static const FFTXCodelet TX_NAME(ff_tx_fft_inplace_small_def) = { .name = TX_NAME_STR("fft_inplace_small"), .function = TX_NAME(ff_tx_fft), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | AV_TX_INPLACE, .factors[0] = TX_FACTOR_ANY, .nb_factors = 1, .min_len = 2, .max_len = 65536, .init = TX_NAME(ff_tx_fft_inplace_small_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE - 256, }; static const FFTXCodelet TX_NAME(ff_tx_fft_inplace_def) = { .name = TX_NAME_STR("fft_inplace"), .function = TX_NAME(ff_tx_fft_inplace), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | AV_TX_INPLACE, .factors[0] = TX_FACTOR_ANY, .nb_factors = 1, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_fft_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE - 512, }; static av_cold int TX_NAME(ff_tx_fft_init_naive_small)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { const double phase = s->inv ? 2.0*M_PI/len : -2.0*M_PI/len; if (!(s->exp = av_malloc(len*len*sizeof(*s->exp)))) return AVERROR(ENOMEM); for (int i = 0; i < len; i++) { for (int j = 0; j < len; j++) { const double factor = phase*i*j; s->exp[i*j] = (TXComplex){ RESCALE(cos(factor)), RESCALE(sin(factor)), }; } } return 0; } static void TX_NAME(ff_tx_fft_naive)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; const int n = s->len; double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n; stride /= sizeof(*dst); for (int i = 0; i < n; i++) { TXComplex tmp = { 0 }; for (int j = 0; j < n; j++) { const double factor = phase*i*j; const TXComplex mult = { RESCALE(cos(factor)), RESCALE(sin(factor)), }; TXComplex res; CMUL3(res, src[j], mult); tmp.re += res.re; tmp.im += res.im; } dst[i*stride] = tmp; } } static void TX_NAME(ff_tx_fft_naive_small)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *src = _src; TXComplex *dst = _dst; const int n = s->len; stride /= sizeof(*dst); for (int i = 0; i < n; i++) { TXComplex tmp = { 0 }; for (int j = 0; j < n; j++) { TXComplex res; const TXComplex mult = s->exp[i*j]; CMUL3(res, src[j], mult); tmp.re += res.re; tmp.im += res.im; } dst[i*stride] = tmp; } } static const FFTXCodelet TX_NAME(ff_tx_fft_naive_small_def) = { .name = TX_NAME_STR("fft_naive_small"), .function = TX_NAME(ff_tx_fft_naive_small), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, .factors[0] = TX_FACTOR_ANY, .nb_factors = 1, .min_len = 2, .max_len = 1024, .init = TX_NAME(ff_tx_fft_init_naive_small), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_MIN/2, }; static const FFTXCodelet TX_NAME(ff_tx_fft_naive_def) = { .name = TX_NAME_STR("fft_naive"), .function = TX_NAME(ff_tx_fft_naive), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, .factors[0] = TX_FACTOR_ANY, .nb_factors = 1, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = NULL, .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_MIN, }; static av_cold int TX_NAME(ff_tx_fft_pfa_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret, *tmp, ps = flags & FF_TX_PRESHUFFLE; FFTXCodeletOptions sub_opts = { .map_dir = FF_TX_MAP_GATHER }; size_t extra_tmp_len = 0; int len_list[TX_MAX_DECOMPOSITIONS]; if ((ret = ff_tx_decompose_length(len_list, TX_TYPE(FFT), len, inv)) < 0) return ret; /* Two iterations to test both orderings. */ for (int i = 0; i < ret; i++) { int len1 = len_list[i]; int len2 = len / len1; /* Our ptwo transforms don't support striding the output. */ if (len2 & (len2 - 1)) FFSWAP(int, len1, len2); ff_tx_clear_ctx(s); /* First transform */ sub_opts.map_dir = FF_TX_MAP_GATHER; flags &= ~AV_TX_INPLACE; flags |= FF_TX_OUT_OF_PLACE; flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len1, inv, scale); if (ret == AVERROR(ENOMEM)) { return ret; } else if (ret < 0) { /* Try again without a preshuffle flag */ flags &= ~FF_TX_PRESHUFFLE; ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len1, inv, scale); if (ret == AVERROR(ENOMEM)) return ret; else if (ret < 0) continue; } /* Second transform. */ sub_opts.map_dir = FF_TX_MAP_SCATTER; flags |= FF_TX_PRESHUFFLE; retry: flags &= ~FF_TX_OUT_OF_PLACE; flags |= AV_TX_INPLACE; ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len2, inv, scale); if (ret == AVERROR(ENOMEM)) { return ret; } else if (ret < 0) { /* Try again with an out-of-place transform */ flags |= FF_TX_OUT_OF_PLACE; flags &= ~AV_TX_INPLACE; ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len2, inv, scale); if (ret == AVERROR(ENOMEM)) { return ret; } else if (ret < 0) { if (flags & FF_TX_PRESHUFFLE) { /* Retry again without a preshuf flag */ flags &= ~FF_TX_PRESHUFFLE; goto retry; } else { continue; } } } /* Success */ break; } /* If nothing was sucessful, error out */ if (ret < 0) return ret; /* Generate PFA map */ if ((ret = ff_tx_gen_compound_mapping(s, opts, 0, s->sub[0].len, s->sub[1].len))) return ret; if (!(s->tmp = av_malloc(len*sizeof(*s->tmp)))) return AVERROR(ENOMEM); /* Flatten input map */ tmp = (int *)s->tmp; for (int k = 0; k < len; k += s->sub[0].len) { memcpy(tmp, &s->map[k], s->sub[0].len*sizeof(*tmp)); for (int i = 0; i < s->sub[0].len; i++) s->map[k + i] = tmp[s->sub[0].map[i]]; } /* Only allocate extra temporary memory if we need it */ if (!(s->sub[1].flags & AV_TX_INPLACE)) extra_tmp_len = len; else if (!ps) extra_tmp_len = s->sub[0].len; if (extra_tmp_len && !(s->exp = av_malloc(extra_tmp_len*sizeof(*s->exp)))) return AVERROR(ENOMEM); return 0; } static void TX_NAME(ff_tx_fft_pfa)(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { const int n = s->sub[0].len, m = s->sub[1].len, l = s->len; const int *in_map = s->map, *out_map = in_map + l; const int *sub_map = s->sub[1].map; TXComplex *tmp1 = s->sub[1].flags & AV_TX_INPLACE ? s->tmp : s->exp; TXComplex *in = _in, *out = _out; stride /= sizeof(*out); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) s->exp[j] = in[in_map[i*n + j]]; s->fn[0](&s->sub[0], &s->tmp[sub_map[i]], s->exp, m*sizeof(TXComplex)); } for (int i = 0; i < n; i++) s->fn[1](&s->sub[1], &tmp1[m*i], &s->tmp[m*i], sizeof(TXComplex)); for (int i = 0; i < l; i++) out[i*stride] = tmp1[out_map[i]]; } static void TX_NAME(ff_tx_fft_pfa_ns)(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { const int n = s->sub[0].len, m = s->sub[1].len, l = s->len; const int *in_map = s->map, *out_map = in_map + l; const int *sub_map = s->sub[1].map; TXComplex *tmp1 = s->sub[1].flags & AV_TX_INPLACE ? s->tmp : s->exp; TXComplex *in = _in, *out = _out; stride /= sizeof(*out); for (int i = 0; i < m; i++) s->fn[0](&s->sub[0], &s->tmp[sub_map[i]], &in[i*n], m*sizeof(TXComplex)); for (int i = 0; i < n; i++) s->fn[1](&s->sub[1], &tmp1[m*i], &s->tmp[m*i], sizeof(TXComplex)); for (int i = 0; i < l; i++) out[i*stride] = tmp1[out_map[i]]; } static const FFTXCodelet TX_NAME(ff_tx_fft_pfa_def) = { .name = TX_NAME_STR("fft_pfa"), .function = TX_NAME(ff_tx_fft_pfa), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE, .factors = { 7, 5, 3, 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2*3, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_fft_pfa_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static const FFTXCodelet TX_NAME(ff_tx_fft_pfa_ns_def) = { .name = TX_NAME_STR("fft_pfa_ns"), .function = TX_NAME(ff_tx_fft_pfa_ns), .type = TX_TYPE(FFT), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | FF_TX_PRESHUFFLE, .factors = { 7, 5, 3, 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2*3, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_fft_pfa_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static av_cold int TX_NAME(ff_tx_mdct_naive_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { s->scale_d = *((SCALE_TYPE *)scale); s->scale_f = s->scale_d; return 0; } static void TX_NAME(ff_tx_mdct_naive_fwd)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *src = _src; TXSample *dst = _dst; double scale = s->scale_d; int len = s->len; const double phase = M_PI/(4.0*len); stride /= sizeof(*dst); for (int i = 0; i < len; i++) { double sum = 0.0; for (int j = 0; j < len*2; j++) { int a = (2*j + 1 + len) * (2*i + 1); sum += UNSCALE(src[j]) * cos(a * phase); } dst[i*stride] = RESCALE(sum*scale); } } static void TX_NAME(ff_tx_mdct_naive_inv)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *src = _src; TXSample *dst = _dst; double scale = s->scale_d; int len = s->len >> 1; int len2 = len*2; const double phase = M_PI/(4.0*len2); stride /= sizeof(*src); for (int i = 0; i < len; i++) { double sum_d = 0.0; double sum_u = 0.0; double i_d = phase * (4*len - 2*i - 1); double i_u = phase * (3*len2 + 2*i + 1); for (int j = 0; j < len2; j++) { double a = (2 * j + 1); double a_d = cos(a * i_d); double a_u = cos(a * i_u); double val = UNSCALE(src[j*stride]); sum_d += a_d * val; sum_u += a_u * val; } dst[i + 0] = RESCALE( sum_d*scale); dst[i + len] = RESCALE(-sum_u*scale); } } static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_fwd_def) = { .name = TX_NAME_STR("mdct_naive_fwd"), .function = TX_NAME(ff_tx_mdct_naive_fwd), .type = TX_TYPE(MDCT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, .factors = { 2, TX_FACTOR_ANY }, /* MDCTs need an even length */ .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_mdct_naive_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_MIN, }; static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_inv_def) = { .name = TX_NAME_STR("mdct_naive_inv"), .function = TX_NAME(ff_tx_mdct_naive_inv), .type = TX_TYPE(MDCT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_mdct_naive_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_MIN, }; static av_cold int TX_NAME(ff_tx_mdct_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; FFTXCodeletOptions sub_opts = { .map_dir = !inv ? FF_TX_MAP_SCATTER : FF_TX_MAP_GATHER, }; s->scale_d = *((SCALE_TYPE *)scale); s->scale_f = s->scale_d; flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ flags |= AV_TX_INPLACE; /* in-place */ flags |= FF_TX_PRESHUFFLE; /* First try with an in-place transform */ if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len >> 1, inv, scale))) { flags &= ~FF_TX_PRESHUFFLE; /* Now try with a generic FFT */ if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len >> 1, inv, scale))) return ret; } s->map = av_malloc((len >> 1)*sizeof(*s->map)); if (!s->map) return AVERROR(ENOMEM); /* If we need to preshuffle copy the map from the subcontext */ if (s->sub[0].flags & FF_TX_PRESHUFFLE) { memcpy(s->map, s->sub->map, (len >> 1)*sizeof(*s->map)); } else { for (int i = 0; i < len >> 1; i++) s->map[i] = i; } if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s, inv ? s->map : NULL))) return ret; /* Saves a multiply in a hot path. */ if (inv) for (int i = 0; i < (s->len >> 1); i++) s->map[i] <<= 1; return 0; } static void TX_NAME(ff_tx_mdct_fwd)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *src = _src, *dst = _dst; TXComplex *exp = s->exp, tmp, *z = _dst; const int len2 = s->len >> 1; const int len4 = s->len >> 2; const int len3 = len2 * 3; const int *sub_map = s->map; stride /= sizeof(*dst); for (int i = 0; i < len2; i++) { /* Folding and pre-reindexing */ const int k = 2*i; const int idx = sub_map[i]; if (k < len2) { tmp.re = FOLD(-src[ len2 + k], src[1*len2 - 1 - k]); tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); } else { tmp.re = FOLD(-src[ len2 + k], -src[5*len2 - 1 - k]); tmp.im = FOLD( src[-len2 + k], -src[1*len3 - 1 - k]); } CMUL(z[idx].im, z[idx].re, tmp.re, tmp.im, exp[i].re, exp[i].im); } s->fn[0](&s->sub[0], z, z, sizeof(TXComplex)); for (int i = 0; i < len4; i++) { const int i0 = len4 + i, i1 = len4 - i - 1; TXComplex src1 = { z[i1].re, z[i1].im }; TXComplex src0 = { z[i0].re, z[i0].im }; CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, exp[i0].im, exp[i0].re); CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, exp[i1].im, exp[i1].re); } } static void TX_NAME(ff_tx_mdct_inv)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXComplex *z = _dst, *exp = s->exp; const TXSample *src = _src, *in1, *in2; const int len2 = s->len >> 1; const int len4 = s->len >> 2; const int *sub_map = s->map; stride /= sizeof(*src); in1 = src; in2 = src + ((len2*2) - 1) * stride; for (int i = 0; i < len2; i++) { int k = sub_map[i]; TXComplex tmp = { in2[-k*stride], in1[k*stride] }; CMUL3(z[i], tmp, exp[i]); } s->fn[0](&s->sub[0], z, z, sizeof(TXComplex)); exp += len2; for (int i = 0; i < len4; i++) { const int i0 = len4 + i, i1 = len4 - i - 1; TXComplex src1 = { z[i1].im, z[i1].re }; TXComplex src0 = { z[i0].im, z[i0].re }; CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); } } static const FFTXCodelet TX_NAME(ff_tx_mdct_fwd_def) = { .name = TX_NAME_STR("mdct_fwd"), .function = TX_NAME(ff_tx_mdct_fwd), .type = TX_TYPE(MDCT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_mdct_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static const FFTXCodelet TX_NAME(ff_tx_mdct_inv_def) = { .name = TX_NAME_STR("mdct_inv"), .function = TX_NAME(ff_tx_mdct_inv), .type = TX_TYPE(MDCT), .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_mdct_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static av_cold int TX_NAME(ff_tx_mdct_inv_full_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; s->scale_d = *((SCALE_TYPE *)scale); s->scale_f = s->scale_d; flags &= ~AV_TX_FULL_IMDCT; if ((ret = ff_tx_init_subtx(s, TX_TYPE(MDCT), flags, NULL, len, 1, scale))) return ret; return 0; } static void TX_NAME(ff_tx_mdct_inv_full)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { int len = s->len << 1; int len2 = len >> 1; int len4 = len >> 2; TXSample *dst = _dst; s->fn[0](&s->sub[0], dst + len4, _src, stride); stride /= sizeof(*dst); for (int i = 0; i < len4; i++) { dst[ i*stride] = -dst[(len2 - i - 1)*stride]; dst[(len - i - 1)*stride] = dst[(len2 + i + 0)*stride]; } } static const FFTXCodelet TX_NAME(ff_tx_mdct_inv_full_def) = { .name = TX_NAME_STR("mdct_inv_full"), .function = TX_NAME(ff_tx_mdct_inv_full), .type = TX_TYPE(MDCT), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | AV_TX_FULL_IMDCT, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_mdct_inv_full_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static av_cold int TX_NAME(ff_tx_mdct_pfa_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret, sub_len; FFTXCodeletOptions sub_opts = { .map_dir = FF_TX_MAP_SCATTER }; len >>= 1; sub_len = len / cd->factors[0]; s->scale_d = *((SCALE_TYPE *)scale); s->scale_f = s->scale_d; flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ flags |= AV_TX_INPLACE; /* in-place */ flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, sub_len, inv, scale))) return ret; if ((ret = ff_tx_gen_compound_mapping(s, opts, s->inv, cd->factors[0], sub_len))) return ret; /* Our 15-point transform is also a compound one, so embed its input map */ if (cd->factors[0] == 15) TX_EMBED_INPUT_PFA_MAP(s->map, len, 3, 5); if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s, inv ? s->map : NULL))) return ret; /* Saves multiplies in loops. */ for (int i = 0; i < len; i++) s->map[i] <<= 1; if (!(s->tmp = av_malloc(len*sizeof(*s->tmp)))) return AVERROR(ENOMEM); TX_TAB(ff_tx_init_tabs)(len / sub_len); return 0; } #define DECL_COMP_IMDCT(N) \ static void TX_NAME(ff_tx_mdct_pfa_##N##xM_inv)(AVTXContext *s, void *_dst, \ void *_src, ptrdiff_t stride) \ { \ TXComplex fft##N##in[N]; \ TXComplex *z = _dst, *exp = s->exp; \ const TXSample *src = _src, *in1, *in2; \ const int len4 = s->len >> 2; \ const int len2 = s->len >> 1; \ const int m = s->sub->len; \ const int *in_map = s->map, *out_map = in_map + N*m; \ const int *sub_map = s->sub->map; \ \ stride /= sizeof(*src); /* To convert it from bytes */ \ in1 = src; \ in2 = src + ((N*m*2) - 1) * stride; \ \ for (int i = 0; i < len2; i += N) { \ for (int j = 0; j < N; j++) { \ const int k = in_map[j]; \ TXComplex tmp = { in2[-k*stride], in1[k*stride] }; \ CMUL3(fft##N##in[j], tmp, exp[j]); \ } \ fft##N(s->tmp + *(sub_map++), fft##N##in, m); \ exp += N; \ in_map += N; \ } \ \ for (int i = 0; i < N; i++) \ s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \ \ for (int i = 0; i < len4; i++) { \ const int i0 = len4 + i, i1 = len4 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ TXComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ TXComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ \ CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ } \ } \ \ static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_inv_def) = { \ .name = TX_NAME_STR("mdct_pfa_" #N "xM_inv"), \ .function = TX_NAME(ff_tx_mdct_pfa_##N##xM_inv), \ .type = TX_TYPE(MDCT), \ .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, \ .factors = { N, TX_FACTOR_ANY }, \ .nb_factors = 2, \ .min_len = N*2, \ .max_len = TX_LEN_UNLIMITED, \ .init = TX_NAME(ff_tx_mdct_pfa_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; DECL_COMP_IMDCT(3) DECL_COMP_IMDCT(5) DECL_COMP_IMDCT(7) DECL_COMP_IMDCT(9) DECL_COMP_IMDCT(15) #define DECL_COMP_MDCT(N) \ static void TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd)(AVTXContext *s, void *_dst, \ void *_src, ptrdiff_t stride) \ { \ TXComplex fft##N##in[N]; \ TXSample *src = _src, *dst = _dst; \ TXComplex *exp = s->exp, tmp; \ const int m = s->sub->len; \ const int len4 = N*m; \ const int len3 = len4 * 3; \ const int len8 = s->len >> 2; \ const int *in_map = s->map, *out_map = in_map + N*m; \ const int *sub_map = s->sub->map; \ \ stride /= sizeof(*dst); \ \ for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ if (k < len4) { \ tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \ tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \ } else { \ tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \ tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \ } \ CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ exp[k >> 1].re, exp[k >> 1].im); \ } \ fft##N(s->tmp + sub_map[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ TXComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ TXComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ \ CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ exp[i0].im, exp[i0].re); \ CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ exp[i1].im, exp[i1].re); \ } \ } \ \ static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd_def) = { \ .name = TX_NAME_STR("mdct_pfa_" #N "xM_fwd"), \ .function = TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd), \ .type = TX_TYPE(MDCT), \ .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, \ .factors = { N, TX_FACTOR_ANY }, \ .nb_factors = 2, \ .min_len = N*2, \ .max_len = TX_LEN_UNLIMITED, \ .init = TX_NAME(ff_tx_mdct_pfa_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; DECL_COMP_MDCT(3) DECL_COMP_MDCT(5) DECL_COMP_MDCT(7) DECL_COMP_MDCT(9) DECL_COMP_MDCT(15) static av_cold int TX_NAME(ff_tx_rdft_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; double f, m; TXSample *tab; uint64_t r2r = flags & AV_TX_REAL_TO_REAL; int len4 = FFALIGN(len, 4) / 4; s->scale_d = *((SCALE_TYPE *)scale); s->scale_f = s->scale_d; flags &= ~(AV_TX_REAL_TO_REAL | AV_TX_REAL_TO_IMAGINARY); if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, NULL, len >> 1, inv, scale))) return ret; if (!(s->exp = av_mallocz((8 + 2*len4)*sizeof(*s->exp)))) return AVERROR(ENOMEM); tab = (TXSample *)s->exp; f = 2*M_PI/len; m = (inv ? 2*s->scale_d : s->scale_d); *tab++ = RESCALE((inv ? 0.5 : 1.0) * m); *tab++ = RESCALE(inv ? 0.5*m : 1.0*m); *tab++ = RESCALE( m); *tab++ = RESCALE(-m); *tab++ = RESCALE( (0.5 - 0.0) * m); if (r2r) *tab++ = 1 / s->scale_f; else *tab++ = RESCALE( (0.0 - 0.5) * m); *tab++ = RESCALE( (0.5 - inv) * m); *tab++ = RESCALE(-(0.5 - inv) * m); for (int i = 0; i < len4; i++) *tab++ = RESCALE(cos(i*f)); tab = ((TXSample *)s->exp) + len4 + 8; for (int i = 0; i < len4; i++) *tab++ = RESCALE(cos(((len - i*4)/4.0)*f)) * (inv ? 1 : -1); return 0; } #define DECL_RDFT(n, inv) \ static void TX_NAME(ff_tx_rdft_ ##n)(AVTXContext *s, void *_dst, \ void *_src, ptrdiff_t stride) \ { \ const int len2 = s->len >> 1; \ const int len4 = s->len >> 2; \ const TXSample *fact = (void *)s->exp; \ const TXSample *tcos = fact + 8; \ const TXSample *tsin = tcos + len4; \ TXComplex *data = inv ? _src : _dst; \ TXComplex t[3]; \ \ if (!inv) \ s->fn[0](&s->sub[0], data, _src, sizeof(TXComplex)); \ else \ data[0].im = data[len2].re; \ \ /* The DC value's both components are real, but we need to change them \ * into complex values. Also, the middle of the array is special-cased. \ * These operations can be done before or after the loop. */ \ t[0].re = data[0].re; \ data[0].re = t[0].re + data[0].im; \ data[0].im = t[0].re - data[0].im; \ data[ 0].re = MULT(fact[0], data[ 0].re); \ data[ 0].im = MULT(fact[1], data[ 0].im); \ data[len4].re = MULT(fact[2], data[len4].re); \ data[len4].im = MULT(fact[3], data[len4].im); \ \ for (int i = 1; i < len4; i++) { \ /* Separate even and odd FFTs */ \ t[0].re = MULT(fact[4], (data[i].re + data[len2 - i].re)); \ t[0].im = MULT(fact[5], (data[i].im - data[len2 - i].im)); \ t[1].re = MULT(fact[6], (data[i].im + data[len2 - i].im)); \ t[1].im = MULT(fact[7], (data[i].re - data[len2 - i].re)); \ \ /* Apply twiddle factors to the odd FFT and add to the even FFT */ \ CMUL(t[2].re, t[2].im, t[1].re, t[1].im, tcos[i], tsin[i]); \ \ data[ i].re = t[0].re + t[2].re; \ data[ i].im = t[2].im - t[0].im; \ data[len2 - i].re = t[0].re - t[2].re; \ data[len2 - i].im = t[2].im + t[0].im; \ } \ \ if (inv) { \ s->fn[0](&s->sub[0], _dst, data, sizeof(TXComplex)); \ } else { \ /* Move [0].im to the last position, as convention requires */ \ data[len2].re = data[0].im; \ data[ 0].im = data[len2].im = 0; \ } \ } \ \ static const FFTXCodelet TX_NAME(ff_tx_rdft_ ##n## _def) = { \ .name = TX_NAME_STR("rdft_" #n), \ .function = TX_NAME(ff_tx_rdft_ ##n), \ .type = TX_TYPE(RDFT), \ .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \ (inv ? FF_TX_INVERSE_ONLY : FF_TX_FORWARD_ONLY), \ .factors = { 4, TX_FACTOR_ANY }, \ .nb_factors = 2, \ .min_len = 4, \ .max_len = TX_LEN_UNLIMITED, \ .init = TX_NAME(ff_tx_rdft_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; DECL_RDFT(r2c, 0) DECL_RDFT(c2r, 1) #define DECL_RDFT_HALF(n, mode, mod2) \ static void TX_NAME(ff_tx_rdft_ ##n)(AVTXContext *s, void *_dst, \ void *_src, ptrdiff_t stride) \ { \ const int len = s->len; \ const int len2 = len >> 1; \ const int len4 = len >> 2; \ const int aligned_len4 = FFALIGN(len, 4)/4; \ const TXSample *fact = (void *)s->exp; \ const TXSample *tcos = fact + 8; \ const TXSample *tsin = tcos + aligned_len4; \ TXComplex *data = _dst; \ TXSample *out = _dst; /* Half-complex is forward-only */ \ TXSample tmp_dc; \ av_unused TXSample tmp_mid; \ TXSample tmp[4]; \ TXComplex sf, sl; \ \ s->fn[0](&s->sub[0], _dst, _src, sizeof(TXComplex)); \ \ tmp_dc = data[0].re; \ data[ 0].re = tmp_dc + data[0].im; \ tmp_dc = tmp_dc - data[0].im; \ \ data[ 0].re = MULT(fact[0], data[ 0].re); \ tmp_dc = MULT(fact[1], tmp_dc); \ data[len4].re = MULT(fact[2], data[len4].re); \ \ if (!mod2) { \ data[len4].im = MULT(fact[3], data[len4].im); \ } else { \ sf = data[len4]; \ sl = data[len4 + 1]; \ if (mode == AV_TX_REAL_TO_REAL) \ tmp[0] = MULT(fact[4], (sf.re + sl.re)); \ else \ tmp[0] = MULT(fact[5], (sf.im - sl.im)); \ tmp[1] = MULT(fact[6], (sf.im + sl.im)); \ tmp[2] = MULT(fact[7], (sf.re - sl.re)); \ \ if (mode == AV_TX_REAL_TO_REAL) { \ tmp[3] = tmp[1]*tcos[len4] - tmp[2]*tsin[len4]; \ tmp_mid = (tmp[0] - tmp[3]); \ } else { \ tmp[3] = tmp[1]*tsin[len4] + tmp[2]*tcos[len4]; \ tmp_mid = (tmp[0] + tmp[3]); \ } \ } \ \ /* NOTE: unrolling this breaks non-mod8 lengths */ \ for (int i = 1; i <= len4; i++) { \ TXSample tmp[4]; \ TXComplex sf = data[i]; \ TXComplex sl = data[len2 - i]; \ \ if (mode == AV_TX_REAL_TO_REAL) \ tmp[0] = MULT(fact[4], (sf.re + sl.re)); \ else \ tmp[0] = MULT(fact[5], (sf.im - sl.im)); \ \ tmp[1] = MULT(fact[6], (sf.im + sl.im)); \ tmp[2] = MULT(fact[7], (sf.re - sl.re)); \ \ if (mode == AV_TX_REAL_TO_REAL) { \ tmp[3] = tmp[1]*tcos[i] - tmp[2]*tsin[i]; \ out[i] = (tmp[0] + tmp[3]); \ out[len - i] = (tmp[0] - tmp[3]); \ } else { \ tmp[3] = tmp[1]*tsin[i] + tmp[2]*tcos[i]; \ out[i - 1] = (tmp[3] - tmp[0]); \ out[len - i - 1] = (tmp[0] + tmp[3]); \ } \ } \ \ for (int i = 1; i < (len4 + (mode == AV_TX_REAL_TO_IMAGINARY)); i++) \ out[len2 - i] = out[len - i]; \ \ if (mode == AV_TX_REAL_TO_REAL) { \ out[len2] = tmp_dc; \ if (mod2) \ out[len4 + 1] = tmp_mid * fact[5]; \ } else if (mod2) { \ out[len4] = tmp_mid; \ } \ } \ \ static const FFTXCodelet TX_NAME(ff_tx_rdft_ ##n## _def) = { \ .name = TX_NAME_STR("rdft_" #n), \ .function = TX_NAME(ff_tx_rdft_ ##n), \ .type = TX_TYPE(RDFT), \ .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | mode | \ FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, \ .factors = { 2 + 2*(!mod2), TX_FACTOR_ANY }, \ .nb_factors = 2, \ .min_len = 2 + 2*(!mod2), \ .max_len = TX_LEN_UNLIMITED, \ .init = TX_NAME(ff_tx_rdft_init), \ .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ .prio = FF_TX_PRIO_BASE, \ }; DECL_RDFT_HALF(r2r, AV_TX_REAL_TO_REAL, 0) DECL_RDFT_HALF(r2r_mod2, AV_TX_REAL_TO_REAL, 1) DECL_RDFT_HALF(r2i, AV_TX_REAL_TO_IMAGINARY, 0) DECL_RDFT_HALF(r2i_mod2, AV_TX_REAL_TO_IMAGINARY, 1) static av_cold int TX_NAME(ff_tx_dct_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; double freq; TXSample *tab; SCALE_TYPE rsc = *((SCALE_TYPE *)scale); if (inv) { len *= 2; s->len *= 2; rsc *= 0.5; } if ((ret = ff_tx_init_subtx(s, TX_TYPE(RDFT), flags, NULL, len, inv, &rsc))) return ret; s->exp = av_malloc((len/2)*3*sizeof(TXSample)); if (!s->exp) return AVERROR(ENOMEM); tab = (TXSample *)s->exp; freq = M_PI/(len*2); for (int i = 0; i < len; i++) tab[i] = RESCALE(cos(i*freq)*(!inv + 1)); if (inv) { for (int i = 0; i < len/2; i++) tab[len + i] = RESCALE(0.5 / sin((2*i + 1)*freq)); } else { for (int i = 0; i < len/2; i++) tab[len + i] = RESCALE(cos((len - 2*i - 1)*freq)); } return 0; } static void TX_NAME(ff_tx_dctII)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *dst = _dst; TXSample *src = _src; const int len = s->len; const int len2 = len >> 1; const TXSample *exp = (void *)s->exp; TXSample next; #ifdef TX_INT32 int64_t tmp1, tmp2; #else TXSample tmp1, tmp2; #endif for (int i = 0; i < len2; i++) { TXSample in1 = src[i]; TXSample in2 = src[len - i - 1]; TXSample s = exp[len + i]; #ifdef TX_INT32 tmp1 = in1 + in2; tmp2 = in1 - in2; tmp1 >>= 1; tmp2 *= s; tmp2 = (tmp2 + 0x40000000) >> 31; #else tmp1 = (in1 + in2)*0.5; tmp2 = (in1 - in2)*s; #endif src[i] = tmp1 + tmp2; src[len - i - 1] = tmp1 - tmp2; } s->fn[0](&s->sub[0], dst, src, sizeof(TXComplex)); next = dst[len]; for (int i = len - 2; i > 0; i -= 2) { TXSample tmp; CMUL(tmp, dst[i], exp[len - i], exp[i], dst[i + 0], dst[i + 1]); dst[i + 1] = next; next += tmp; } #ifdef TX_INT32 tmp1 = ((int64_t)exp[0]) * ((int64_t)dst[0]); dst[0] = (tmp1 + 0x40000000) >> 31; #else dst[0] = exp[0] * dst[0]; #endif dst[1] = next; } static void TX_NAME(ff_tx_dctIII)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *dst = _dst; TXSample *src = _src; const int len = s->len; const int len2 = len >> 1; const TXSample *exp = (void *)s->exp; #ifdef TX_INT32 int64_t tmp1, tmp2 = src[len - 1]; tmp2 = (2*tmp2 + 0x40000000) >> 31; #else TXSample tmp1, tmp2 = 2*src[len - 1]; #endif src[len] = tmp2; for (int i = len - 2; i >= 2; i -= 2) { TXSample val1 = src[i - 0]; TXSample val2 = src[i - 1] - src[i + 1]; CMUL(src[i + 1], src[i], exp[len - i], exp[i], val1, val2); } s->fn[0](&s->sub[0], dst, src, sizeof(float)); for (int i = 0; i < len2; i++) { TXSample in1 = dst[i]; TXSample in2 = dst[len - i - 1]; TXSample c = exp[len + i]; tmp1 = in1 + in2; tmp2 = in1 - in2; tmp2 *= c; #ifdef TX_INT32 tmp2 = (tmp2 + 0x40000000) >> 31; #endif dst[i] = tmp1 + tmp2; dst[len - i - 1] = tmp1 - tmp2; } } static const FFTXCodelet TX_NAME(ff_tx_dctII_def) = { .name = TX_NAME_STR("dctII"), .function = TX_NAME(ff_tx_dctII), .type = TX_TYPE(DCT), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, .factors = { 2, TX_FACTOR_ANY }, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_dct_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static const FFTXCodelet TX_NAME(ff_tx_dctIII_def) = { .name = TX_NAME_STR("dctIII"), .function = TX_NAME(ff_tx_dctIII), .type = TX_TYPE(DCT), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, .factors = { 2, TX_FACTOR_ANY }, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_dct_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static av_cold int TX_NAME(ff_tx_dcstI_init)(AVTXContext *s, const FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale) { int ret; SCALE_TYPE rsc = *((SCALE_TYPE *)scale); if (inv) { len *= 2; s->len *= 2; rsc *= 0.5; } /* We want a half-complex RDFT */ flags |= cd->type == TX_TYPE(DCT_I) ? AV_TX_REAL_TO_REAL : AV_TX_REAL_TO_IMAGINARY; if ((ret = ff_tx_init_subtx(s, TX_TYPE(RDFT), flags, NULL, (len - 1 + 2*(cd->type == TX_TYPE(DST_I)))*2, 0, &rsc))) return ret; s->tmp = av_mallocz((len + 1)*2*sizeof(TXSample)); if (!s->tmp) return AVERROR(ENOMEM); return 0; } static void TX_NAME(ff_tx_dctI)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *dst = _dst; TXSample *src = _src; const int len = s->len - 1; TXSample *tmp = (TXSample *)s->tmp; stride /= sizeof(TXSample); for (int i = 0; i < len; i++) tmp[i] = tmp[2*len - i] = src[i * stride]; tmp[len] = src[len * stride]; /* Middle */ s->fn[0](&s->sub[0], dst, tmp, sizeof(TXSample)); } static void TX_NAME(ff_tx_dstI)(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { TXSample *dst = _dst; TXSample *src = _src; const int len = s->len + 1; TXSample *tmp = (void *)s->tmp; stride /= sizeof(TXSample); tmp[0] = 0; for (int i = 1; i < len; i++) { TXSample a = src[(i - 1) * stride]; tmp[i] = -a; tmp[2*len - i] = a; } tmp[len] = 0; /* i == n, Nyquist */ s->fn[0](&s->sub[0], dst, tmp, sizeof(float)); } static const FFTXCodelet TX_NAME(ff_tx_dctI_def) = { .name = TX_NAME_STR("dctI"), .function = TX_NAME(ff_tx_dctI), .type = TX_TYPE(DCT_I), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_dcstI_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; static const FFTXCodelet TX_NAME(ff_tx_dstI_def) = { .name = TX_NAME_STR("dstI"), .function = TX_NAME(ff_tx_dstI), .type = TX_TYPE(DST_I), .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE, .factors = { 2, TX_FACTOR_ANY }, .nb_factors = 2, .min_len = 2, .max_len = TX_LEN_UNLIMITED, .init = TX_NAME(ff_tx_dcstI_init), .cpu_flags = FF_TX_CPU_FLAGS_ALL, .prio = FF_TX_PRIO_BASE, }; int TX_TAB(ff_tx_mdct_gen_exp)(AVTXContext *s, int *pre_tab) { int off = 0; int len4 = s->len >> 1; double scale = s->scale_d; const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; size_t alloc = pre_tab ? 2*len4 : len4; if (!(s->exp = av_malloc_array(alloc, sizeof(*s->exp)))) return AVERROR(ENOMEM); scale = sqrt(fabs(scale)); if (pre_tab) off = len4; for (int i = 0; i < len4; i++) { const double alpha = M_PI_2 * (i + theta) / len4; s->exp[off + i] = (TXComplex){ RESCALE(cos(alpha) * scale), RESCALE(sin(alpha) * scale) }; } if (pre_tab) for (int i = 0; i < len4; i++) s->exp[i] = s->exp[len4 + pre_tab[i]]; return 0; } const FFTXCodelet * const TX_NAME(ff_tx_codelet_list)[] = { /* Split-Radix codelets */ &TX_NAME(ff_tx_fft2_ns_def), &TX_NAME(ff_tx_fft4_ns_def), &TX_NAME(ff_tx_fft8_ns_def), &TX_NAME(ff_tx_fft16_ns_def), &TX_NAME(ff_tx_fft32_ns_def), &TX_NAME(ff_tx_fft64_ns_def), &TX_NAME(ff_tx_fft128_ns_def), &TX_NAME(ff_tx_fft256_ns_def), &TX_NAME(ff_tx_fft512_ns_def), &TX_NAME(ff_tx_fft1024_ns_def), &TX_NAME(ff_tx_fft2048_ns_def), &TX_NAME(ff_tx_fft4096_ns_def), &TX_NAME(ff_tx_fft8192_ns_def), &TX_NAME(ff_tx_fft16384_ns_def), &TX_NAME(ff_tx_fft32768_ns_def), &TX_NAME(ff_tx_fft65536_ns_def), &TX_NAME(ff_tx_fft131072_ns_def), &TX_NAME(ff_tx_fft262144_ns_def), &TX_NAME(ff_tx_fft524288_ns_def), &TX_NAME(ff_tx_fft1048576_ns_def), &TX_NAME(ff_tx_fft2097152_ns_def), /* Prime factor codelets */ &TX_NAME(ff_tx_fft3_ns_def), &TX_NAME(ff_tx_fft5_ns_def), &TX_NAME(ff_tx_fft7_ns_def), &TX_NAME(ff_tx_fft9_ns_def), &TX_NAME(ff_tx_fft15_ns_def), /* We get these for free */ &TX_NAME(ff_tx_fft3_fwd_def), &TX_NAME(ff_tx_fft5_fwd_def), &TX_NAME(ff_tx_fft7_fwd_def), &TX_NAME(ff_tx_fft9_fwd_def), /* Standalone transforms */ &TX_NAME(ff_tx_fft_def), &TX_NAME(ff_tx_fft_inplace_def), &TX_NAME(ff_tx_fft_inplace_small_def), &TX_NAME(ff_tx_fft_pfa_def), &TX_NAME(ff_tx_fft_pfa_ns_def), &TX_NAME(ff_tx_fft_naive_def), &TX_NAME(ff_tx_fft_naive_small_def), &TX_NAME(ff_tx_mdct_fwd_def), &TX_NAME(ff_tx_mdct_inv_def), &TX_NAME(ff_tx_mdct_pfa_3xM_fwd_def), &TX_NAME(ff_tx_mdct_pfa_5xM_fwd_def), &TX_NAME(ff_tx_mdct_pfa_7xM_fwd_def), &TX_NAME(ff_tx_mdct_pfa_9xM_fwd_def), &TX_NAME(ff_tx_mdct_pfa_15xM_fwd_def), &TX_NAME(ff_tx_mdct_pfa_3xM_inv_def), &TX_NAME(ff_tx_mdct_pfa_5xM_inv_def), &TX_NAME(ff_tx_mdct_pfa_7xM_inv_def), &TX_NAME(ff_tx_mdct_pfa_9xM_inv_def), &TX_NAME(ff_tx_mdct_pfa_15xM_inv_def), &TX_NAME(ff_tx_mdct_naive_fwd_def), &TX_NAME(ff_tx_mdct_naive_inv_def), &TX_NAME(ff_tx_mdct_inv_full_def), &TX_NAME(ff_tx_rdft_r2c_def), &TX_NAME(ff_tx_rdft_r2r_def), &TX_NAME(ff_tx_rdft_r2r_mod2_def), &TX_NAME(ff_tx_rdft_r2i_def), &TX_NAME(ff_tx_rdft_r2i_mod2_def), &TX_NAME(ff_tx_rdft_c2r_def), &TX_NAME(ff_tx_dctII_def), &TX_NAME(ff_tx_dctIII_def), &TX_NAME(ff_tx_dctI_def), &TX_NAME(ff_tx_dstI_def), NULL, };