/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define REDS 0 #define YELLOWS 1 #define GREENS 2 #define CYANS 3 #define BLUES 4 #define MAGENTAS 5 #define RED (1 << REDS) #define YELLOW (1 << YELLOWS) #define GREEN (1 << GREENS) #define CYAN (1 << CYANS) #define BLUE (1 << BLUES) #define MAGENTA (1 << MAGENTAS) #define ALL 0x3F typedef struct HueSaturationContext { const AVClass *class; float hue; float saturation; float intensity; float strength; float rlw, glw, blw; int lightness; int colors; int depth; int planewidth[4]; int planeheight[4]; float matrix[4][4]; int64_t imatrix[4][4]; int bpp; int step; uint8_t rgba_map[4]; int (*do_slice[2])(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } HueSaturationContext; #define DENOM 0x10000 static inline void get_triplet(int64_t m[4][4], int *r, int *g, int *b) { const int ir = *r, ig = *g, ib = *b; *r = (ir * m[0][0] + ig * m[1][0] + ib * m[2][0] /*+ m[3][0]*/) >> 16; *g = (ir * m[0][1] + ig * m[1][1] + ib * m[2][1] /*+ m[3][1]*/) >> 16; *b = (ir * m[0][2] + ig * m[1][2] + ib * m[2][2] /*+ m[3][2]*/) >> 16; } #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16) static inline int lerpi8(int v0, int v1, int f, int max) { return v0 + FAST_DIV255((v1 - v0) * f); } static inline int lerpi16(int v0, int v1, int f, int max) { return v0 + (v1 - v0) * (int64_t)f / max; } #define HUESATURATION(name, type, clip, xall) \ static int do_slice_##name##_##xall(AVFilterContext *ctx, \ void *arg, \ int jobnr, int nb_jobs) \ { \ HueSaturationContext *s = ctx->priv; \ AVFrame *frame = arg; \ const int imax = (1 << name) - 1; \ const float strength = s->strength; \ const int colors = s->colors; \ const int step = s->step; \ const int width = frame->width; \ const int process_h = frame->height; \ const int slice_start = (process_h * jobnr ) / nb_jobs; \ const int slice_end = (process_h * (jobnr+1)) / nb_jobs; \ const ptrdiff_t linesize = frame->linesize[0] / sizeof(type); \ type *row = (type *)frame->data[0] + linesize * slice_start; \ const uint8_t offset_r = s->rgba_map[R]; \ const uint8_t offset_g = s->rgba_map[G]; \ const uint8_t offset_b = s->rgba_map[B]; \ type *dst_r = row + offset_r; \ type *dst_g = row + offset_g; \ type *dst_b = row + offset_b; \ \ for (int y = slice_start; y < slice_end; y++) { \ for (int x = 0; x < width * step; x += step) { \ int ir, ig, ib, ro, go, bo; \ \ ir = ro = dst_r[x]; \ ig = go = dst_g[x]; \ ib = bo = dst_b[x]; \ \ if (xall) { \ get_triplet(s->imatrix, &ir, &ig, &ib); \ } else { \ const int min = FFMIN3(ir, ig, ib); \ const int max = FFMAX3(ir, ig, ib); \ const int flags = (ir == max) << REDS \ | (ir == min) << CYANS \ | (ig == max) << GREENS \ | (ig == min) << MAGENTAS \ | (ib == max) << BLUES \ | (ib == min) << YELLOWS; \ if (colors & flags) { \ int f = 0; \ \ if (colors & RED) \ f = FFMAX(f, ir - FFMAX(ig, ib)); \ if (colors & YELLOW) \ f = FFMAX(f, FFMIN(ir, ig) - ib); \ if (colors & GREEN) \ f = FFMAX(f, ig - FFMAX(ir, ib)); \ if (colors & CYAN) \ f = FFMAX(f, FFMIN(ig, ib) - ir); \ if (colors & BLUE) \ f = FFMAX(f, ib - FFMAX(ir, ig)); \ if (colors & MAGENTA) \ f = FFMAX(f, FFMIN(ir, ib) - ig); \ f = FFMIN(f * strength, imax); \ get_triplet(s->imatrix, &ir, &ig, &ib); \ ir = lerpi##name(ro, ir, f, imax); \ ig = lerpi##name(go, ig, f, imax); \ ib = lerpi##name(bo, ib, f, imax); \ } \ } \ \ dst_r[x] = clip(ir); \ dst_g[x] = clip(ig); \ dst_b[x] = clip(ib); \ } \ \ dst_r += linesize; \ dst_g += linesize; \ dst_b += linesize; \ } \ \ return 0; \ } HUESATURATION(8, uint8_t, av_clip_uint8, 0) HUESATURATION(16, uint16_t, av_clip_uint16, 0) HUESATURATION(8, uint8_t, av_clip_uint8, 1) HUESATURATION(16, uint16_t, av_clip_uint16, 1) static void identity_matrix(float matrix[4][4]) { for (int y = 0; y < 4; y++) for (int x = 0; x < 4; x++) matrix[y][x] = y == x; } static void matrix_multiply(float a[4][4], float b[4][4], float c[4][4]) { float temp[4][4]; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { temp[y][x] = b[y][0] * a[0][x] + b[y][1] * a[1][x] + b[y][2] * a[2][x] + b[y][3] * a[3][x]; } } for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) c[y][x] = temp[y][x]; } } static void colorscale_matrix(float matrix[4][4], float r, float g, float b) { float temp[4][4]; temp[0][0] = r; temp[0][1] = 0.f; temp[0][2] = 0.f; temp[0][3] = 0.f; temp[1][0] = 0.f; temp[1][1] = g; temp[1][2] = 0.f; temp[1][3] = 0.f; temp[2][0] = 0.f; temp[2][1] = 0.f; temp[2][2] = b; temp[2][3] = 0.f; temp[3][0] = 0.f; temp[3][1] = 0.f; temp[3][2] = 0.f; temp[3][3] = 1.f; matrix_multiply(temp, matrix, matrix); } static void saturation_matrix(float matrix[4][4], float saturation, float rlw, float glw, float blw) { float s = 1.f - saturation; float a = s * rlw + saturation; float b = s * rlw; float c = s * rlw; float d = s * glw; float e = s * glw + saturation; float f = s * glw; float g = s * blw; float h = s * blw; float i = s * blw + saturation; float m[4][4]; m[0][0] = a; m[0][1] = b; m[0][2] = c; m[0][3] = 0.f; m[1][0] = d; m[1][1] = e; m[1][2] = f; m[1][3] = 0.f; m[2][0] = g; m[2][1] = h; m[2][2] = i; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; matrix_multiply(m, matrix, matrix); } static void matrix2imatrix(float matrix[4][4], int64_t imatrix[4][4]) { for (int y = 0; y < 4; y++) for (int x = 0; x < 4; x++) imatrix[y][x] = lrintf(matrix[y][x] * DENOM); } static void x_rotate_matrix(float matrix[4][4], float rs, float rc) { float m[4][4]; m[0][0] = 1.f; m[0][1] = 0.f; m[0][2] = 0.f; m[0][3] = 0.f; m[1][0] = 0.f; m[1][1] = rc; m[1][2] = rs; m[1][3] = 0.f; m[2][0] = 0.f; m[2][1] = -rs; m[2][2] = rc; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; matrix_multiply(m, matrix, matrix); } static void y_rotate_matrix(float matrix[4][4], float rs, float rc) { float m[4][4]; m[0][0] = rc; m[0][1] = 0.f; m[0][2] = -rs; m[0][3] = 0.f; m[1][0] = 0.f; m[1][1] = 1.f; m[1][2] = 0.f; m[1][3] = 0.f; m[2][0] = rs; m[2][1] = 0.f; m[2][2] = rc; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; matrix_multiply(m, matrix, matrix); } static void z_rotate_matrix(float matrix[4][4], float rs, float rc) { float m[4][4]; m[0][0] = rc; m[0][1] = rs; m[0][2] = 0.f; m[0][3] = 0.f; m[1][0] = -rs; m[1][1] = rc; m[1][2] = 0.f; m[1][3] = 0.f; m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = 1.f; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; matrix_multiply(m, matrix, matrix); } static void z_shear_matrix(float matrix[4][4], float dx, float dy) { float m[4][4]; m[0][0] = 1.f; m[0][1] = 0.f; m[0][2] = dx; m[0][3] = 0.f; m[1][0] = 0.f; m[1][1] = 1.f; m[1][2] = dy; m[1][3] = 0.f; m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = 1.f; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; matrix_multiply(m, matrix, matrix); } static void transform_point(float matrix[4][4], float x, float y, float z, float *tx, float *ty, float *tz) { x = y; *tx = x * matrix[0][0] + y * matrix[1][0] + z * matrix[2][0] + matrix[3][0]; *ty = x * matrix[0][1] + y * matrix[1][1] + z * matrix[2][1] + matrix[3][1]; *tz = x * matrix[0][2] + y * matrix[1][2] + z * matrix[2][2] + matrix[3][2]; } static void hue_rotate_matrix(float matrix[4][4], float rotation, float rlw, float glw, float blw) { float mag, lx, ly, lz; float xrs, xrc; float yrs, yrc; float zrs, zrc; float zsx, zsy; mag = M_SQRT2; xrs = 1.f / mag; xrc = 1.f / mag; x_rotate_matrix(matrix, xrs, xrc); mag = sqrtf(3.f); yrs = -1.f / mag; yrc = M_SQRT2 / mag; y_rotate_matrix(matrix, yrs, yrc); transform_point(matrix, rlw, glw, blw, &lx, &ly, &lz); zsx = lx / lz; zsy = ly / lz; z_shear_matrix(matrix, zsx, zsy); zrs = sinf(rotation * M_PI / 180.f); zrc = cosf(rotation * M_PI / 180.f); z_rotate_matrix(matrix, zrs, zrc); z_shear_matrix(matrix, -zsx, -zsy); y_rotate_matrix(matrix, -yrs, yrc); x_rotate_matrix(matrix, -xrs, xrc); } static void shue_rotate_matrix(float m[4][4], float rotation) { float xrs, xrc, yrs, yrc, zrs, zrc, mag; mag = M_SQRT2; xrs = 1.f / mag; xrc = 1.f / mag; x_rotate_matrix(m, xrs, xrc); mag = sqrtf(3.f); yrs = -1.f / mag; yrc = M_SQRT2 / mag; y_rotate_matrix(m, yrs, yrc); zrs = sinf(rotation * M_PI / 180.f); zrc = cosf(rotation * M_PI / 180.f); z_rotate_matrix(m, zrs, zrc); y_rotate_matrix(m, -yrs, yrc); x_rotate_matrix(m, -xrs, xrc); } static void init_matrix(HueSaturationContext *s) { float i = 1.f + s->intensity; float saturation = 1.f + s->saturation; float hue = s->hue; identity_matrix(s->matrix); colorscale_matrix(s->matrix, i, i, i); saturation_matrix(s->matrix, saturation, s->rlw, s->glw, s->blw); if (s->lightness) hue_rotate_matrix(s->matrix, hue, s->rlw, s->glw, s->blw); else shue_rotate_matrix(s->matrix, hue); matrix2imatrix(s->matrix, s->imatrix); } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; HueSaturationContext *s = ctx->priv; init_matrix(s); ff_filter_execute(ctx, s->do_slice[(s->strength >= 99.f) && (s->colors == ALL)], frame, NULL, FFMIN(s->planeheight[1], ff_filter_get_nb_threads(ctx))); return ff_filter_frame(ctx->outputs[0], frame); } static const enum AVPixelFormat pixel_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ABGR, AV_PIX_FMT_ARGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_NONE }; static av_cold int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; HueSaturationContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); s->depth = desc->comp[0].depth; s->bpp = s->depth >> 3; s->step = av_get_padded_bits_per_pixel(desc) >> (3 + (s->bpp == 2)); ff_fill_rgba_map(s->rgba_map, inlink->format); s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->do_slice[0] = s->depth <= 8 ? do_slice_8_0 : do_slice_16_0; s->do_slice[1] = s->depth <= 8 ? do_slice_8_1 : do_slice_16_1; return 0; } static const AVFilterPad huesaturation_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE, .filter_frame = filter_frame, .config_props = config_input, }, }; #define OFFSET(x) offsetof(HueSaturationContext, x) #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption huesaturation_options[] = { { "hue", "set the hue shift", OFFSET(hue), AV_OPT_TYPE_FLOAT, {.dbl=0},-180, 180, VF }, { "saturation", "set the saturation shift", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, VF }, { "intensity", "set the intensity shift", OFFSET(intensity), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, VF }, { "colors", "set colors range", OFFSET(colors), AV_OPT_TYPE_FLAGS, {.i64=ALL}, 0,ALL,VF, .unit = "colors" }, { "r", "set reds", 0, AV_OPT_TYPE_CONST, {.i64=RED}, 0, 0, VF, .unit = "colors" }, { "y", "set yellows", 0, AV_OPT_TYPE_CONST, {.i64=YELLOW}, 0, 0, VF, .unit = "colors" }, { "g", "set greens", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, VF, .unit = "colors" }, { "c", "set cyans", 0, AV_OPT_TYPE_CONST, {.i64=CYAN}, 0, 0, VF, .unit = "colors" }, { "b", "set blues", 0, AV_OPT_TYPE_CONST, {.i64=BLUE}, 0, 0, VF, .unit = "colors" }, { "m", "set magentas", 0, AV_OPT_TYPE_CONST, {.i64=MAGENTA}, 0, 0, VF, .unit = "colors" }, { "a", "set all colors", 0, AV_OPT_TYPE_CONST, {.i64=ALL}, 0, 0, VF, .unit = "colors" }, { "strength", "set the filtering strength", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0,100,VF }, { "rw", "set the red weight", OFFSET(rlw), AV_OPT_TYPE_FLOAT, {.dbl=.333}, 0, 1, VF }, { "gw", "set the green weight", OFFSET(glw), AV_OPT_TYPE_FLOAT, {.dbl=.334}, 0, 1, VF }, { "bw", "set the blue weight", OFFSET(blw), AV_OPT_TYPE_FLOAT, {.dbl=.333}, 0, 1, VF }, { "lightness", "set the preserve lightness", OFFSET(lightness), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF }, { NULL } }; AVFILTER_DEFINE_CLASS(huesaturation); const AVFilter ff_vf_huesaturation = { .name = "huesaturation", .description = NULL_IF_CONFIG_SMALL("Apply hue-saturation-intensity adjustments."), .priv_size = sizeof(HueSaturationContext), .priv_class = &huesaturation_class, FILTER_INPUTS(huesaturation_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pixel_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = ff_filter_process_command, };