/* * Copyright (c) 2017 Ming Yang * Copyright (c) 2019 Paul B Mahol * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "internal.h" #include "video.h" typedef struct BilateralContext { const AVClass *class; float sigmaS; float sigmaR; int planes; int nb_threads; int nb_planes; int depth; int planewidth[4]; int planeheight[4]; float alpha; float range_table[65536]; float *img_out_f[4]; float *img_temp[4]; float *map_factor_a[4]; float *map_factor_b[4]; float *slice_factor_a[4]; float *slice_factor_b[4]; float *line_factor_a[4]; float *line_factor_b[4]; } BilateralContext; #define OFFSET(x) offsetof(BilateralContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption bilateral_options[] = { { "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS }, { "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS }, { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(bilateral); static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; static int config_params(AVFilterContext *ctx) { BilateralContext *s = ctx->priv; float inv_sigma_range; inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1)); s->alpha = expf(-sqrtf(2.f) / s->sigmaS); //compute a lookup table for (int i = 0; i < (1 << s->depth); i++) s->range_table[i] = s->alpha * expf(-i * inv_sigma_range); return 0; } typedef struct ThreadData { AVFrame *in, *out; } ThreadData; static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; BilateralContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); s->depth = desc->comp[0].depth; config_params(ctx); s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_threads = ff_filter_get_nb_threads(ctx); for (int p = 0; p < s->nb_planes; p++) { const int w = s->planewidth[p]; const int h = s->planeheight[p]; s->img_out_f[p] = av_calloc(w * h, sizeof(float)); s->img_temp[p] = av_calloc(w * h, sizeof(float)); s->map_factor_a[p] = av_calloc(w * h, sizeof(float)); s->map_factor_b[p] = av_calloc(w * h, sizeof(float)); s->slice_factor_a[p] = av_calloc(w, sizeof(float)); s->slice_factor_b[p] = av_calloc(w, sizeof(float)); s->line_factor_a[p] = av_calloc(w, sizeof(float)); s->line_factor_b[p] = av_calloc(w, sizeof(float)); if (!s->img_out_f[p] || !s->img_temp[p] || !s->map_factor_a[p] || !s->map_factor_b[p] || !s->slice_factor_a[p] || !s->slice_factor_a[p] || !s->line_factor_a[p] || !s->line_factor_a[p]) return AVERROR(ENOMEM); } return 0; } #define BILATERAL_H(type, name) \ static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \ int jobnr, int nb_jobs, int plane) \ { \ const int width = s->planewidth[plane]; \ const int height = s->planeheight[plane]; \ const int slice_start = (height * jobnr) / nb_jobs; \ const int slice_end = (height * (jobnr+1)) / nb_jobs; \ const int src_linesize = in->linesize[plane] / sizeof(type); \ const type *src = (const type *)in->data[plane]; \ float *img_temp = s->img_temp[plane]; \ float *map_factor_a = s->map_factor_a[plane]; \ const float *const range_table = s->range_table; \ const float alpha = s->alpha; \ float ypr, ycr, fp, fc; \ const float inv_alpha_ = 1.f - alpha; \ \ for (int y = slice_start; y < slice_end; y++) { \ float *temp_factor_x, *temp_x = &img_temp[y * width]; \ const type *in_x = &src[y * src_linesize]; \ const type *texture_x = &src[y * src_linesize]; \ type tpr; \ \ *temp_x++ = ypr = *in_x++; \ tpr = *texture_x++; \ \ temp_factor_x = &map_factor_a[y * width]; \ *temp_factor_x++ = fp = 1; \ \ for (int x = 1; x < width; x++) { \ float alpha_; \ int range_dist; \ type tcr = *texture_x++; \ type dr = abs(tcr - tpr); \ \ range_dist = dr; \ alpha_ = range_table[range_dist]; \ *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \ tpr = tcr; \ ypr = ycr; \ *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \ fp = fc; \ } \ --temp_x; *temp_x = ((*temp_x) + (*--in_x)); \ tpr = *--texture_x; \ ypr = *in_x; \ \ --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \ fp = 1; \ \ for (int x = width - 2; x >= 0; x--) { \ type tcr = *--texture_x; \ type dr = abs(tcr - tpr); \ int range_dist = dr; \ float alpha_ = range_table[range_dist]; \ \ ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \ --temp_x; *temp_x = ((*temp_x) + ycr); \ tpr = tcr; \ ypr = ycr; \ \ fc = inv_alpha_ + alpha_*fp; \ --temp_factor_x; \ *temp_factor_x = ((*temp_factor_x) + fc); \ fp = fc; \ } \ } \ } BILATERAL_H(uint8_t, byte) BILATERAL_H(uint16_t, word) #define BILATERAL_V(type, name) \ static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \ int jobnr, int nb_jobs, int plane) \ { \ const int width = s->planewidth[plane]; \ const int height = s->planeheight[plane]; \ const int slice_start = (width * jobnr) / nb_jobs; \ const int slice_end = (width * (jobnr+1)) / nb_jobs; \ const int src_linesize = in->linesize[plane] / sizeof(type); \ const type *src = (const type *)in->data[plane] + slice_start; \ float *img_out_f = s->img_out_f[plane] + slice_start; \ float *img_temp = s->img_temp[plane] + slice_start; \ float *map_factor_a = s->map_factor_a[plane] + slice_start; \ float *map_factor_b = s->map_factor_b[plane] + slice_start; \ float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \ float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \ float *line_factor_a = s->line_factor_a[plane] + slice_start; \ float *line_factor_b = s->line_factor_b[plane] + slice_start; \ const float *const range_table = s->range_table; \ const float alpha = s->alpha; \ float *ycy, *ypy, *xcy; \ const float inv_alpha_ = 1.f - alpha; \ float *ycf, *ypf, *xcf, *in_factor; \ const type *tcy, *tpy; \ int h1; \ \ memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \ \ in_factor = map_factor_a; \ memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \ for (int y = 1; y < height; y++) { \ tpy = &src[(y - 1) * src_linesize]; \ tcy = &src[y * src_linesize]; \ xcy = &img_temp[y * width]; \ ypy = &img_out_f[(y - 1) * width]; \ ycy = &img_out_f[y * width]; \ \ xcf = &in_factor[y * width]; \ ypf = &map_factor_b[(y - 1) * width]; \ ycf = &map_factor_b[y * width]; \ for (int x = 0; x < slice_end - slice_start; x++) { \ type dr = abs((*tcy++) - (*tpy++)); \ int range_dist = dr; \ float alpha_ = range_table[range_dist]; \ \ *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \ *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \ } \ } \ h1 = height - 1; \ ycf = line_factor_a; \ ypf = line_factor_b; \ memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \ for (int x = 0, k = 0; x < slice_end - slice_start; x++) \ map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \ \ ycy = slice_factor_a; \ ypy = slice_factor_b; \ memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \ for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \ int idx = h1 * width + x; \ img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \ } \ \ for (int y = h1 - 1; y >= 0; y--) { \ float *ycf_, *ypf_, *factor_; \ float *ycy_, *ypy_, *out_; \ \ tpy = &src[(y + 1) * src_linesize]; \ tcy = &src[y * src_linesize]; \ xcy = &img_temp[y * width]; \ ycy_ = ycy; \ ypy_ = ypy; \ out_ = &img_out_f[y * width]; \ \ xcf = &in_factor[y * width]; \ ycf_ = ycf; \ ypf_ = ypf; \ factor_ = &map_factor_b[y * width]; \ for (int x = 0; x < slice_end - slice_start; x++) { \ type dr = abs((*tcy++) - (*tpy++)); \ int range_dist = dr; \ float alpha_ = range_table[range_dist]; \ float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \ \ *ycf_++ = fcc; \ *factor_ = (*factor_ + fcc); \ \ ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \ *ycy_++ = ycc; \ *out_ = (*out_ + ycc) / (*factor_); \ out_++; \ factor_++; \ } \ \ ypy = ycy; \ ypf = ycf; \ } \ } BILATERAL_V(uint8_t, byte) BILATERAL_V(uint16_t, word) #define BILATERAL_O(type, name) \ static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \ int jobnr, int nb_jobs, int plane) \ { \ const int width = s->planewidth[plane]; \ const int height = s->planeheight[plane]; \ const int slice_start = (height * jobnr) / nb_jobs; \ const int slice_end = (height * (jobnr+1)) / nb_jobs; \ const int dst_linesize = out->linesize[plane] / sizeof(type); \ \ for (int i = slice_start; i < slice_end; i++) { \ type *dst = (type *)out->data[plane] + i * dst_linesize; \ const float *const img_out_f = s->img_out_f[plane] + i * width; \ for (int j = 0; j < width; j++) \ dst[j] = lrintf(img_out_f[j]); \ } \ } BILATERAL_O(uint8_t, byte) BILATERAL_O(uint16_t, word) static int bilateralh_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { BilateralContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *in = td->in; for (int plane = 0; plane < s->nb_planes; plane++) { if (!(s->planes & (1 << plane))) continue; if (s->depth <= 8) bilateralh_byte(s, out, in, jobnr, nb_jobs, plane); else bilateralh_word(s, out, in, jobnr, nb_jobs, plane); } return 0; } static int bilateralv_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { BilateralContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *in = td->in; for (int plane = 0; plane < s->nb_planes; plane++) { if (!(s->planes & (1 << plane))) continue; if (s->depth <= 8) bilateralv_byte(s, out, in, jobnr, nb_jobs, plane); else bilateralv_word(s, out, in, jobnr, nb_jobs, plane); } return 0; } static int bilateralo_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { BilateralContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *in = td->in; for (int plane = 0; plane < s->nb_planes; plane++) { if (!(s->planes & (1 << plane))) { if (out != in) { const int height = s->planeheight[plane]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; const int width = s->planewidth[plane]; const int linesize = in->linesize[plane]; const int dst_linesize = out->linesize[plane]; const uint8_t *src = in->data[plane]; uint8_t *dst = out->data[plane]; av_image_copy_plane(dst + slice_start * dst_linesize, dst_linesize, src + slice_start * linesize, linesize, width * ((s->depth + 7) / 8), slice_end - slice_start); } continue; } if (s->depth <= 8) bilateralo_byte(s, out, in, jobnr, nb_jobs, plane); else bilateralo_word(s, out, in, jobnr, nb_jobs, plane); } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; BilateralContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; ThreadData td; AVFrame *out; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.in = in; td.out = out; ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads); ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads); ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads); if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { BilateralContext *s = ctx->priv; for (int p = 0; p < s->nb_planes; p++) { av_freep(&s->img_out_f[p]); av_freep(&s->img_temp[p]); av_freep(&s->map_factor_a[p]); av_freep(&s->map_factor_b[p]); av_freep(&s->slice_factor_a[p]); av_freep(&s->slice_factor_b[p]); av_freep(&s->line_factor_a[p]); av_freep(&s->line_factor_b[p]); } } static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags) { int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags); if (ret < 0) return ret; return config_params(ctx); } static const AVFilterPad bilateral_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, }; const AVFilter ff_vf_bilateral = { .name = "bilateral", .description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."), .priv_size = sizeof(BilateralContext), .priv_class = &bilateral_class, .uninit = uninit, FILTER_INPUTS(bilateral_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pix_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, };