/* * Copyright (c) 1998 Juergen Mueller And Sundry Contributors * This source code is freely redistributable and may be used for * any purpose. This copyright notice must be maintained. * Juergen Mueller And Sundry Contributors are not responsible for * the consequences of using this software. * * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * chorus audio filter */ #include "libavutil/avstring.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "internal.h" #include "generate_wave_table.h" typedef struct ChorusContext { const AVClass *class; float in_gain, out_gain; char *delays_str; char *decays_str; char *speeds_str; char *depths_str; float *delays; float *decays; float *speeds; float *depths; uint8_t **chorusbuf; int **phase; int *length; int32_t **lookup_table; int *counter; int num_chorus; int max_samples; int channels; int modulation; int fade_out; int64_t next_pts; } ChorusContext; #define OFFSET(x) offsetof(ChorusContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption chorus_options[] = { { "in_gain", "set input gain", OFFSET(in_gain), AV_OPT_TYPE_FLOAT, {.dbl=.4}, 0, 1, A }, { "out_gain", "set output gain", OFFSET(out_gain), AV_OPT_TYPE_FLOAT, {.dbl=.4}, 0, 1, A }, { "delays", "set delays", OFFSET(delays_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A }, { "decays", "set decays", OFFSET(decays_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A }, { "speeds", "set speeds", OFFSET(speeds_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A }, { "depths", "set depths", OFFSET(depths_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A }, { NULL } }; AVFILTER_DEFINE_CLASS(chorus); static void count_items(char *item_str, int *nb_items) { char *p; *nb_items = 1; for (p = item_str; *p; p++) { if (*p == '|') (*nb_items)++; } } static void fill_items(char *item_str, int *nb_items, float *items) { char *p, *saveptr = NULL; int i, new_nb_items = 0; p = item_str; for (i = 0; i < *nb_items; i++) { char *tstr = av_strtok(p, "|", &saveptr); p = NULL; if (tstr) new_nb_items += sscanf(tstr, "%f", &items[new_nb_items]) == 1; } *nb_items = new_nb_items; } static av_cold int init(AVFilterContext *ctx) { ChorusContext *s = ctx->priv; int nb_delays, nb_decays, nb_speeds, nb_depths; if (!s->delays_str || !s->decays_str || !s->speeds_str || !s->depths_str) { av_log(ctx, AV_LOG_ERROR, "Both delays & decays & speeds & depths must be set.\n"); return AVERROR(EINVAL); } count_items(s->delays_str, &nb_delays); count_items(s->decays_str, &nb_decays); count_items(s->speeds_str, &nb_speeds); count_items(s->depths_str, &nb_depths); s->delays = av_realloc_f(s->delays, nb_delays, sizeof(*s->delays)); s->decays = av_realloc_f(s->decays, nb_decays, sizeof(*s->decays)); s->speeds = av_realloc_f(s->speeds, nb_speeds, sizeof(*s->speeds)); s->depths = av_realloc_f(s->depths, nb_depths, sizeof(*s->depths)); if (!s->delays || !s->decays || !s->speeds || !s->depths) return AVERROR(ENOMEM); fill_items(s->delays_str, &nb_delays, s->delays); fill_items(s->decays_str, &nb_decays, s->decays); fill_items(s->speeds_str, &nb_speeds, s->speeds); fill_items(s->depths_str, &nb_depths, s->depths); if (nb_delays != nb_decays && nb_delays != nb_speeds && nb_delays != nb_depths) { av_log(ctx, AV_LOG_ERROR, "Number of delays & decays & speeds & depths given must be same.\n"); return AVERROR(EINVAL); } s->num_chorus = nb_delays; if (s->num_chorus < 1) { av_log(ctx, AV_LOG_ERROR, "At least one delay & decay & speed & depth must be set.\n"); return AVERROR(EINVAL); } s->length = av_calloc(s->num_chorus, sizeof(*s->length)); s->lookup_table = av_calloc(s->num_chorus, sizeof(*s->lookup_table)); if (!s->length || !s->lookup_table) return AVERROR(ENOMEM); s->next_pts = AV_NOPTS_VALUE; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ChorusContext *s = ctx->priv; float sum_in_volume = 1.0; int n; s->channels = outlink->ch_layout.nb_channels; for (n = 0; n < s->num_chorus; n++) { int samples = (int) ((s->delays[n] + s->depths[n]) * outlink->sample_rate / 1000.0); int depth_samples = (int) (s->depths[n] * outlink->sample_rate / 1000.0); s->length[n] = outlink->sample_rate / s->speeds[n]; s->lookup_table[n] = av_malloc(sizeof(int32_t) * s->length[n]); if (!s->lookup_table[n]) return AVERROR(ENOMEM); ff_generate_wave_table(WAVE_SIN, AV_SAMPLE_FMT_S32, s->lookup_table[n], s->length[n], 0., depth_samples, 0); s->max_samples = FFMAX(s->max_samples, samples); } for (n = 0; n < s->num_chorus; n++) sum_in_volume += s->decays[n]; if (s->in_gain * (sum_in_volume) > 1.0 / s->out_gain) av_log(ctx, AV_LOG_WARNING, "output gain can cause saturation or clipping of output\n"); s->counter = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->counter)); if (!s->counter) return AVERROR(ENOMEM); s->phase = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->phase)); if (!s->phase) return AVERROR(ENOMEM); for (n = 0; n < outlink->ch_layout.nb_channels; n++) { s->phase[n] = av_calloc(s->num_chorus, sizeof(int)); if (!s->phase[n]) return AVERROR(ENOMEM); } s->fade_out = s->max_samples; return av_samples_alloc_array_and_samples(&s->chorusbuf, NULL, outlink->ch_layout.nb_channels, s->max_samples, outlink->format, 0); } #define MOD(a, b) (((a) >= (b)) ? (a) - (b) : (a)) static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; ChorusContext *s = ctx->priv; AVFrame *out_frame; int c, i, n; if (av_frame_is_writable(frame)) { out_frame = frame; } else { out_frame = ff_get_audio_buffer(ctx->outputs[0], frame->nb_samples); if (!out_frame) { av_frame_free(&frame); return AVERROR(ENOMEM); } av_frame_copy_props(out_frame, frame); } for (c = 0; c < inlink->ch_layout.nb_channels; c++) { const float *src = (const float *)frame->extended_data[c]; float *dst = (float *)out_frame->extended_data[c]; float *chorusbuf = (float *)s->chorusbuf[c]; int *phase = s->phase[c]; for (i = 0; i < frame->nb_samples; i++) { float out, in = src[i]; out = in * s->in_gain; for (n = 0; n < s->num_chorus; n++) { out += chorusbuf[MOD(s->max_samples + s->counter[c] - s->lookup_table[n][phase[n]], s->max_samples)] * s->decays[n]; phase[n] = MOD(phase[n] + 1, s->length[n]); } out *= s->out_gain; dst[i] = out; chorusbuf[s->counter[c]] = in; s->counter[c] = MOD(s->counter[c] + 1, s->max_samples); } } s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, (AVRational){1, inlink->sample_rate}, inlink->time_base); if (frame != out_frame) av_frame_free(&frame); return ff_filter_frame(ctx->outputs[0], out_frame); } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ChorusContext *s = ctx->priv; int ret; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && !ctx->is_disabled && s->fade_out) { int nb_samples = FFMIN(s->fade_out, 2048); AVFrame *frame; frame = ff_get_audio_buffer(outlink, nb_samples); if (!frame) return AVERROR(ENOMEM); s->fade_out -= nb_samples; av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->ch_layout.nb_channels, frame->format); frame->pts = s->next_pts; if (s->next_pts != AV_NOPTS_VALUE) s->next_pts += av_rescale_q(nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base); ret = filter_frame(ctx->inputs[0], frame); } return ret; } static av_cold void uninit(AVFilterContext *ctx) { ChorusContext *s = ctx->priv; int n; av_freep(&s->delays); av_freep(&s->decays); av_freep(&s->speeds); av_freep(&s->depths); if (s->chorusbuf) av_freep(&s->chorusbuf[0]); av_freep(&s->chorusbuf); if (s->phase) for (n = 0; n < s->channels; n++) av_freep(&s->phase[n]); av_freep(&s->phase); av_freep(&s->counter); av_freep(&s->length); if (s->lookup_table) for (n = 0; n < s->num_chorus; n++) av_freep(&s->lookup_table[n]); av_freep(&s->lookup_table); } static const AVFilterPad chorus_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, }, }; static const AVFilterPad chorus_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .request_frame = request_frame, .config_props = config_output, }, }; const AVFilter ff_af_chorus = { .name = "chorus", .description = NULL_IF_CONFIG_SMALL("Add a chorus effect to the audio."), .priv_size = sizeof(ChorusContext), .priv_class = &chorus_class, .init = init, .uninit = uninit, FILTER_INPUTS(chorus_inputs), FILTER_OUTPUTS(chorus_outputs), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), };