/* * Copyright (c) 2014 - 2021 Jason Jang * Copyright (c) 2021 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/tx.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "internal.h" typedef struct AudioPsyClipContext { const AVClass *class; double level_in; double level_out; double clip_level; double adaptive; int auto_level; int diff_only; int iterations; char *protections_str; double *protections; int num_psy_bins; int fft_size; int overlap; int channels; int spread_table_rows; int *spread_table_index; int (*spread_table_range)[2]; float *window, *inv_window, *spread_table, *margin_curve; AVFrame *in; AVFrame *in_buffer; AVFrame *in_frame; AVFrame *out_dist_frame; AVFrame *windowed_frame; AVFrame *clipping_delta; AVFrame *spectrum_buf; AVFrame *mask_curve; AVTXContext **tx_ctx; av_tx_fn tx_fn; AVTXContext **itx_ctx; av_tx_fn itx_fn; } AudioPsyClipContext; #define OFFSET(x) offsetof(AudioPsyClipContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM static const AVOption apsyclip_options[] = { { "level_in", "set input level", OFFSET(level_in), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, FLAGS }, { "level_out", "set output level", OFFSET(level_out), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, FLAGS }, { "clip", "set clip level", OFFSET(clip_level), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 1, FLAGS }, { "diff", "enable difference", OFFSET(diff_only), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "adaptive", "set adaptive distortion", OFFSET(adaptive), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 1, FLAGS }, { "iterations", "set iterations", OFFSET(iterations), AV_OPT_TYPE_INT, {.i64=10}, 1, 20, FLAGS }, { "level", "set auto level", OFFSET(auto_level), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, {NULL} }; AVFILTER_DEFINE_CLASS(apsyclip); static void generate_hann_window(float *window, float *inv_window, int size) { for (int i = 0; i < size; i++) { float value = 0.5f * (1.f - cosf(2.f * M_PI * i / size)); window[i] = value; // 1/window to calculate unwindowed peak. inv_window[i] = value > 0.1f ? 1.f / value : 0.f; } } static void set_margin_curve(AudioPsyClipContext *s, const int (*points)[2], int num_points, int sample_rate) { int j = 0; s->margin_curve[0] = points[0][1]; for (int i = 0; i < num_points - 1; i++) { while (j < s->fft_size / 2 + 1 && j * sample_rate / s->fft_size < points[i + 1][0]) { // linearly interpolate between points int binHz = j * sample_rate / s->fft_size; s->margin_curve[j] = points[i][1] + (binHz - points[i][0]) * (points[i + 1][1] - points[i][1]) / (points[i + 1][0] - points[i][0]); j++; } } // handle bins after the last point while (j < s->fft_size / 2 + 1) { s->margin_curve[j] = points[num_points - 1][1]; j++; } // convert margin curve to linear amplitude scale for (j = 0; j < s->fft_size / 2 + 1; j++) s->margin_curve[j] = powf(10.f, s->margin_curve[j] / 20.f); } static void generate_spread_table(AudioPsyClipContext *s) { // Calculate tent-shape function in log-log scale. // As an optimization, only consider bins close to "bin" // This reduces the number of multiplications needed in calculate_mask_curve // The masking contribution at faraway bins is negligeable // Another optimization to save memory and speed up the calculation of the // spread table is to calculate and store only 2 spread functions per // octave, and reuse the same spread function for multiple bins. int table_index = 0; int bin = 0; int increment = 1; while (bin < s->num_psy_bins) { float sum = 0; int base_idx = table_index * s->num_psy_bins; int start_bin = bin * 3 / 4; int end_bin = FFMIN(s->num_psy_bins, ((bin + 1) * 4 + 2) / 3); int next_bin; for (int j = start_bin; j < end_bin; j++) { // add 0.5 so i=0 doesn't get log(0) float rel_idx_log = FFABS(logf((j + 0.5f) / (bin + 0.5f))); float value; if (j >= bin) { // mask up value = expf(-rel_idx_log * 40.f); } else { // mask down value = expf(-rel_idx_log * 80.f); } // the spreading function is centred in the row sum += value; s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] = value; } // now normalize it for (int j = start_bin; j < end_bin; j++) { s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] /= sum; } s->spread_table_range[table_index][0] = start_bin - bin; s->spread_table_range[table_index][1] = end_bin - bin; if (bin <= 1) { next_bin = bin + 1; } else { if ((bin & (bin - 1)) == 0) { // power of 2 increment = bin / 2; } next_bin = bin + increment; } // set bins between "bin" and "next_bin" to use this table_index for (int i = bin; i < next_bin; i++) s->spread_table_index[i] = table_index; bin = next_bin; table_index++; } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioPsyClipContext *s = ctx->priv; static const int points[][2] = { {0,14}, {125,14}, {250,16}, {500,18}, {1000,20}, {2000,20}, {4000,20}, {8000,17}, {16000,14}, {20000,-10} }; static const int num_points = 10; float scale = 1.f; int ret; s->fft_size = inlink->sample_rate > 100000 ? 1024 : inlink->sample_rate > 50000 ? 512 : 256; s->overlap = s->fft_size / 4; // The psy masking calculation is O(n^2), // so skip it for frequencies not covered by base sampling rantes (i.e. 44k) if (inlink->sample_rate <= 50000) { s->num_psy_bins = s->fft_size / 2; } else if (inlink->sample_rate <= 100000) { s->num_psy_bins = s->fft_size / 4; } else { s->num_psy_bins = s->fft_size / 8; } s->window = av_calloc(s->fft_size, sizeof(*s->window)); s->inv_window = av_calloc(s->fft_size, sizeof(*s->inv_window)); if (!s->window || !s->inv_window) return AVERROR(ENOMEM); s->in_buffer = ff_get_audio_buffer(inlink, s->fft_size * 2); s->in_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->out_dist_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->windowed_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->clipping_delta = ff_get_audio_buffer(inlink, s->fft_size * 2); s->spectrum_buf = ff_get_audio_buffer(inlink, s->fft_size * 2); s->mask_curve = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1); if (!s->in_buffer || !s->in_frame || !s->out_dist_frame || !s->windowed_frame || !s->clipping_delta || !s->spectrum_buf || !s->mask_curve) return AVERROR(ENOMEM); generate_hann_window(s->window, s->inv_window, s->fft_size); s->margin_curve = av_calloc(s->fft_size / 2 + 1, sizeof(*s->margin_curve)); if (!s->margin_curve) return AVERROR(ENOMEM); s->spread_table_rows = av_log2(s->num_psy_bins) * 2; s->spread_table = av_calloc(s->spread_table_rows * s->num_psy_bins, sizeof(*s->spread_table)); if (!s->spread_table) return AVERROR(ENOMEM); s->spread_table_range = av_calloc(s->spread_table_rows * 2, sizeof(*s->spread_table_range)); if (!s->spread_table_range) return AVERROR(ENOMEM); s->spread_table_index = av_calloc(s->num_psy_bins, sizeof(*s->spread_table_index)); if (!s->spread_table_index) return AVERROR(ENOMEM); set_margin_curve(s, points, num_points, inlink->sample_rate); generate_spread_table(s); s->channels = inlink->ch_layout.nb_channels; s->tx_ctx = av_calloc(s->channels, sizeof(*s->tx_ctx)); s->itx_ctx = av_calloc(s->channels, sizeof(*s->itx_ctx)); if (!s->tx_ctx || !s->itx_ctx) return AVERROR(ENOMEM); for (int ch = 0; ch < s->channels; ch++) { ret = av_tx_init(&s->tx_ctx[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&s->itx_ctx[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0); if (ret < 0) return ret; } return 0; } static void apply_window(AudioPsyClipContext *s, const float *in_frame, float *out_frame, const int add_to_out_frame) { const float *window = s->window; for (int i = 0; i < s->fft_size; i++) { if (add_to_out_frame) { out_frame[i] += in_frame[i] * window[i]; } else { out_frame[i] = in_frame[i] * window[i]; } } } static void calculate_mask_curve(AudioPsyClipContext *s, const float *spectrum, float *mask_curve) { for (int i = 0; i < s->fft_size / 2 + 1; i++) mask_curve[i] = 0; for (int i = 0; i < s->num_psy_bins; i++) { int base_idx, start_bin, end_bin, table_idx; float magnitude; int range[2]; if (i == 0) { magnitude = FFABS(spectrum[0]); } else if (i == s->fft_size / 2) { magnitude = FFABS(spectrum[s->fft_size]); } else { // Because the input signal is real, the + and - frequencies are redundant. // Multiply the magnitude by 2 to simulate adding up the + and - frequencies. magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2; } table_idx = s->spread_table_index[i]; range[0] = s->spread_table_range[table_idx][0]; range[1] = s->spread_table_range[table_idx][1]; base_idx = table_idx * s->num_psy_bins; start_bin = FFMAX(0, i + range[0]); end_bin = FFMIN(s->num_psy_bins, i + range[1]); for (int j = start_bin; j < end_bin; j++) mask_curve[j] += s->spread_table[base_idx + s->num_psy_bins / 2 + j - i] * magnitude; } // for ultrasonic frequencies, skip the O(n^2) spread calculation and just copy the magnitude for (int i = s->num_psy_bins; i < s->fft_size / 2 + 1; i++) { float magnitude; if (i == s->fft_size / 2) { magnitude = FFABS(spectrum[s->fft_size]); } else { // Because the input signal is real, the + and - frequencies are redundant. // Multiply the magnitude by 2 to simulate adding up the + and - frequencies. magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2; } mask_curve[i] = magnitude; } for (int i = 0; i < s->fft_size / 2 + 1; i++) mask_curve[i] = mask_curve[i] / s->margin_curve[i]; } static void clip_to_window(AudioPsyClipContext *s, const float *windowed_frame, float *clipping_delta, float delta_boost) { const float *window = s->window; for (int i = 0; i < s->fft_size; i++) { const float limit = s->clip_level * window[i]; const float effective_value = windowed_frame[i] + clipping_delta[i]; if (effective_value > limit) { clipping_delta[i] += (limit - effective_value) * delta_boost; } else if (effective_value < -limit) { clipping_delta[i] += (-limit - effective_value) * delta_boost; } } } static void limit_clip_spectrum(AudioPsyClipContext *s, float *clip_spectrum, const float *mask_curve) { // bin 0 float relative_distortion_level = FFABS(clip_spectrum[0]) / mask_curve[0]; if (relative_distortion_level > 1.f) clip_spectrum[0] /= relative_distortion_level; // bin 1..N/2-1 for (int i = 1; i < s->fft_size / 2; i++) { float real = clip_spectrum[i * 2]; float imag = clip_spectrum[i * 2 + 1]; // Because the input signal is real, the + and - frequencies are redundant. // Multiply the magnitude by 2 to simulate adding up the + and - frequencies. relative_distortion_level = hypotf(real, imag) * 2 / mask_curve[i]; if (relative_distortion_level > 1.0) { clip_spectrum[i * 2] /= relative_distortion_level; clip_spectrum[i * 2 + 1] /= relative_distortion_level; clip_spectrum[s->fft_size * 2 - i * 2] /= relative_distortion_level; clip_spectrum[s->fft_size * 2 - i * 2 + 1] /= relative_distortion_level; } } // bin N/2 relative_distortion_level = FFABS(clip_spectrum[s->fft_size]) / mask_curve[s->fft_size / 2]; if (relative_distortion_level > 1.f) clip_spectrum[s->fft_size] /= relative_distortion_level; } static void r2c(float *buffer, int size) { for (int i = size - 1; i >= 0; i--) buffer[2 * i] = buffer[i]; for (int i = size - 1; i >= 0; i--) buffer[2 * i + 1] = 0.f; } static void c2r(float *buffer, int size) { for (int i = 0; i < size; i++) buffer[i] = buffer[2 * i]; for (int i = 0; i < size; i++) buffer[i + size] = 0.f; } static void feed(AVFilterContext *ctx, int ch, const float *in_samples, float *out_samples, int diff_only, float *in_frame, float *out_dist_frame, float *windowed_frame, float *clipping_delta, float *spectrum_buf, float *mask_curve) { AudioPsyClipContext *s = ctx->priv; const float clip_level_inv = 1.f / s->clip_level; const float level_out = s->level_out; float orig_peak = 0; float peak; // shift in/out buffers for (int i = 0; i < s->fft_size - s->overlap; i++) { in_frame[i] = in_frame[i + s->overlap]; out_dist_frame[i] = out_dist_frame[i + s->overlap]; } for (int i = 0; i < s->overlap; i++) { in_frame[i + s->fft_size - s->overlap] = in_samples[i]; out_dist_frame[i + s->fft_size - s->overlap] = 0.f; } apply_window(s, in_frame, windowed_frame, 0); r2c(windowed_frame, s->fft_size); s->tx_fn(s->tx_ctx[ch], spectrum_buf, windowed_frame, sizeof(AVComplexFloat)); c2r(windowed_frame, s->fft_size); calculate_mask_curve(s, spectrum_buf, mask_curve); // It would be easier to calculate the peak from the unwindowed input. // This is just for consistency with the clipped peak calculateion // because the inv_window zeros out samples on the edge of the window. for (int i = 0; i < s->fft_size; i++) orig_peak = FFMAX(orig_peak, FFABS(windowed_frame[i] * s->inv_window[i])); orig_peak *= clip_level_inv; peak = orig_peak; // clear clipping_delta for (int i = 0; i < s->fft_size * 2; i++) clipping_delta[i] = 0.f; // repeat clipping-filtering process a few times to control both the peaks and the spectrum for (int i = 0; i < s->iterations; i++) { float mask_curve_shift = 1.122f; // 1.122 is 1dB // The last 1/3 of rounds have boosted delta to help reach the peak target faster float delta_boost = 1.f; if (i >= s->iterations - s->iterations / 3) { // boosting the delta when largs peaks are still present is dangerous if (peak < 2.f) delta_boost = 2.f; } clip_to_window(s, windowed_frame, clipping_delta, delta_boost); r2c(clipping_delta, s->fft_size); s->tx_fn(s->tx_ctx[ch], spectrum_buf, clipping_delta, sizeof(AVComplexFloat)); limit_clip_spectrum(s, spectrum_buf, mask_curve); s->itx_fn(s->itx_ctx[ch], clipping_delta, spectrum_buf, sizeof(AVComplexFloat)); c2r(clipping_delta, s->fft_size); for (int i = 0; i < s->fft_size; i++) clipping_delta[i] /= s->fft_size; peak = 0; for (int i = 0; i < s->fft_size; i++) peak = FFMAX(peak, FFABS((windowed_frame[i] + clipping_delta[i]) * s->inv_window[i])); peak *= clip_level_inv; // Automatically adjust mask_curve as necessary to reach peak target if (orig_peak > 1.f && peak > 1.f) { float diff_achieved = orig_peak - peak; if (i + 1 < s->iterations - s->iterations / 3 && diff_achieved > 0) { float diff_needed = orig_peak - 1.f; float diff_ratio = diff_needed / diff_achieved; // If a good amount of peak reduction was already achieved, // don't shift the mask_curve by the full peak value // On the other hand, if only a little peak reduction was achieved, // don't shift the mask_curve by the enormous diff_ratio. diff_ratio = FFMIN(diff_ratio, peak); mask_curve_shift = FFMAX(mask_curve_shift, diff_ratio); } else { // If the peak got higher than the input or we are in the last 1/3 rounds, // go back to the heavy-handed peak heuristic. mask_curve_shift = FFMAX(mask_curve_shift, peak); } } mask_curve_shift = 1.f + (mask_curve_shift - 1.f) * s->adaptive; // Be less strict in the next iteration. // This helps with peak control. for (int i = 0; i < s->fft_size / 2 + 1; i++) mask_curve[i] *= mask_curve_shift; } // do overlap & add apply_window(s, clipping_delta, out_dist_frame, 1); for (int i = 0; i < s->overlap; i++) { // 4 times overlap with squared hanning window results in 1.5 time increase in amplitude if (!ctx->is_disabled) { out_samples[i] = out_dist_frame[i] / 1.5f; if (!diff_only) out_samples[i] += in_frame[i]; if (s->auto_level) out_samples[i] *= clip_level_inv; out_samples[i] *= level_out; } else { out_samples[i] = in_frame[i]; } } } static int psy_channel(AVFilterContext *ctx, AVFrame *in, AVFrame *out, int ch) { AudioPsyClipContext *s = ctx->priv; const float *src = (const float *)in->extended_data[ch]; float *in_buffer = (float *)s->in_buffer->extended_data[ch]; float *dst = (float *)out->extended_data[ch]; for (int n = 0; n < s->overlap; n++) in_buffer[n] = src[n] * s->level_in; feed(ctx, ch, in_buffer, dst, s->diff_only, (float *)(s->in_frame->extended_data[ch]), (float *)(s->out_dist_frame->extended_data[ch]), (float *)(s->windowed_frame->extended_data[ch]), (float *)(s->clipping_delta->extended_data[ch]), (float *)(s->spectrum_buf->extended_data[ch]), (float *)(s->mask_curve->extended_data[ch])); return 0; } static int psy_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AudioPsyClipContext *s = ctx->priv; AVFrame *out = arg; const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs; const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) psy_channel(ctx, s->in, out, ch); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AudioPsyClipContext *s = ctx->priv; AVFrame *out; int ret; out = ff_get_audio_buffer(outlink, s->overlap); if (!out) { ret = AVERROR(ENOMEM); goto fail; } s->in = in; av_frame_copy_props(out, in); ff_filter_execute(ctx, psy_channels, out, NULL, FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); out->pts = in->pts; out->nb_samples = in->nb_samples; ret = ff_filter_frame(outlink, out); fail: av_frame_free(&in); s->in = NULL; return ret < 0 ? ret : 0; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AudioPsyClipContext *s = ctx->priv; AVFrame *in = NULL; int ret = 0, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_samples(inlink, s->overlap, s->overlap, &in); if (ret < 0) return ret; if (ret > 0) { return filter_frame(inlink, in); } else if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { ff_outlink_set_status(outlink, status, pts); return 0; } else { if (ff_inlink_queued_samples(inlink) >= s->overlap) { ff_filter_set_ready(ctx, 10); } else if (ff_outlink_frame_wanted(outlink)) { ff_inlink_request_frame(inlink); } return 0; } } static av_cold void uninit(AVFilterContext *ctx) { AudioPsyClipContext *s = ctx->priv; av_freep(&s->window); av_freep(&s->inv_window); av_freep(&s->spread_table); av_freep(&s->spread_table_range); av_freep(&s->spread_table_index); av_freep(&s->margin_curve); av_frame_free(&s->in_buffer); av_frame_free(&s->in_frame); av_frame_free(&s->out_dist_frame); av_frame_free(&s->windowed_frame); av_frame_free(&s->clipping_delta); av_frame_free(&s->spectrum_buf); av_frame_free(&s->mask_curve); for (int ch = 0; ch < s->channels; ch++) { if (s->tx_ctx) av_tx_uninit(&s->tx_ctx[ch]); if (s->itx_ctx) av_tx_uninit(&s->itx_ctx[ch]); } av_freep(&s->tx_ctx); av_freep(&s->itx_ctx); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, }; const AVFilter ff_af_apsyclip = { .name = "apsyclip", .description = NULL_IF_CONFIG_SMALL("Audio Psychoacoustic Clipper."), .priv_size = sizeof(AudioPsyClipContext), .priv_class = &apsyclip_class, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(ff_audio_default_filterpad), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .activate = activate, .process_command = ff_filter_process_command, };