/* * Copyright (c) 2013 * MIPS Technologies, Inc., California. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * AAC Spectral Band Replication decoding functions (fixed-point) * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) * Copyright (c) 2009-2010 Alex Converse * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC Spectral Band Replication decoding functions (fixed-point) * Note: Rounding-to-nearest used unless otherwise stated * @author Robert Swain ( rob opendot cl ) * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com ) */ #define USE_FIXED 1 #include "aac.h" #include "sbr.h" #include "aacsbr.h" #include "aacsbrdata.h" #include "aacps.h" #include "sbrdsp.h" #include "libavutil/internal.h" #include "libavutil/libm.h" #include "libavutil/avassert.h" #include #include #include static void aacsbr_func_ptr_init(AACSBRContext *c); static const int CONST_LN2 = Q31(0.6931471806/256); // ln(2)/256 static const int CONST_RECIP_LN2 = Q31(0.7213475204); // 0.5/ln(2) static const int CONST_076923 = Q31(0.76923076923076923077f); static const int fixed_log_table[10] = { Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6), Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11) }; static int fixed_log(int x) { int i, ret, xpow, tmp; ret = x; xpow = x; for (i=0; i<10; i+=2){ xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31); tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31); ret -= tmp; xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31); tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31); ret += tmp; } return ret; } static const int fixed_exp_table[7] = { Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120), Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320) }; static int fixed_exp(int x) { int i, ret, xpow, tmp; ret = 0x800000 + x; xpow = x; for (i=0; i<7; i++){ xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23); tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31); ret += tmp; } return ret; } static void make_bands(int16_t* bands, int start, int stop, int num_bands) { int k, previous, present; int base, prod, nz = 0; base = (stop << 23) / start; while (base < 0x40000000){ base <<= 1; nz++; } base = fixed_log(base - 0x80000000); base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands; base = fixed_exp(base); previous = start; prod = start << 23; for (k = 0; k < num_bands-1; k++) { prod = (int)(((int64_t)prod * base + 0x400000) >> 23); present = (prod + 0x400000) >> 23; bands[k] = present - previous; previous = present; } bands[num_bands-1] = stop - previous; } /// Dequantization and stereo decoding (14496-3 sp04 p203) static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) { int k, e; int ch; if (id_aac == TYPE_CPE && sbr->bs_coupling) { int alpha = sbr->data[0].bs_amp_res ? 2 : 1; int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24; for (e = 1; e <= sbr->data[0].bs_num_env; e++) { for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { SoftFloat temp1, temp2, fac; temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14; if (temp1.exp & 1) temp1.mant = 759250125; else temp1.mant = 0x20000000; temp1.exp = (temp1.exp >> 1) + 1; if (temp1.exp > 66) { // temp1 > 1E20 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); temp1 = FLOAT_1; } temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha; if (temp2.exp & 1) temp2.mant = 759250125; else temp2.mant = 0x20000000; temp2.exp = (temp2.exp >> 1) + 1; fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2)); sbr->data[0].env_facs[e][k] = fac; sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2); } } for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { for (k = 0; k < sbr->n_q; k++) { SoftFloat temp1, temp2, fac; temp1.exp = NOISE_FLOOR_OFFSET - \ sbr->data[0].noise_facs_q[e][k] + 2; temp1.mant = 0x20000000; av_assert0(temp1.exp <= 66); temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1; temp2.mant = 0x20000000; fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2)); sbr->data[0].noise_facs[e][k] = fac; sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2); } } } else { // SCE or one non-coupled CPE for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { int alpha = sbr->data[ch].bs_amp_res ? 2 : 1; for (e = 1; e <= sbr->data[ch].bs_num_env; e++) for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){ SoftFloat temp1; temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12; if (temp1.exp & 1) temp1.mant = 759250125; else temp1.mant = 0x20000000; temp1.exp = (temp1.exp >> 1) + 1; if (temp1.exp > 66) { // temp1 > 1E20 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); temp1 = FLOAT_1; } sbr->data[ch].env_facs[e][k] = temp1; } for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) for (k = 0; k < sbr->n_q; k++){ sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \ sbr->data[ch].noise_facs_q[e][k] + 1; sbr->data[ch].noise_facs[e][k].mant = 0x20000000; } } } } /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering * (14496-3 sp04 p214) * Warning: This routine does not seem numerically stable. */ static void sbr_hf_inverse_filter(SBRDSPContext *dsp, int (*alpha0)[2], int (*alpha1)[2], const int X_low[32][40][2], int k0) { int k; int shift, round; for (k = 0; k < k0; k++) { SoftFloat phi[3][2][2]; SoftFloat a00, a01, a10, a11; SoftFloat dk; dsp->autocorrelate(X_low[k], phi); dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]), av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]), av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999)); if (!dk.mant) { a10 = FLOAT_0; a11 = FLOAT_0; } else { SoftFloat temp_real, temp_im; temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]), av_mul_sf(phi[0][0][1], phi[1][1][1])), av_mul_sf(phi[0][1][0], phi[1][0][0])); temp_im = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]), av_mul_sf(phi[0][0][1], phi[1][1][0])), av_mul_sf(phi[0][1][1], phi[1][0][0])); a10 = av_div_sf(temp_real, dk); a11 = av_div_sf(temp_im, dk); } if (!phi[1][0][0].mant) { a00 = FLOAT_0; a01 = FLOAT_0; } else { SoftFloat temp_real, temp_im; temp_real = av_add_sf(phi[0][0][0], av_add_sf(av_mul_sf(a10, phi[1][1][0]), av_mul_sf(a11, phi[1][1][1]))); temp_im = av_add_sf(phi[0][0][1], av_sub_sf(av_mul_sf(a11, phi[1][1][0]), av_mul_sf(a10, phi[1][1][1]))); temp_real.mant = -temp_real.mant; temp_im.mant = -temp_im.mant; a00 = av_div_sf(temp_real, phi[1][0][0]); a01 = av_div_sf(temp_im, phi[1][0][0]); } shift = a00.exp; if (shift >= 3) alpha0[k][0] = 0x7fffffff; else if (shift <= -30) alpha0[k][0] = 0; else { shift = 1-shift; if (shift <= 0) alpha0[k][0] = a00.mant * (1<<-shift); else { round = 1 << (shift-1); alpha0[k][0] = (a00.mant + round) >> shift; } } shift = a01.exp; if (shift >= 3) alpha0[k][1] = 0x7fffffff; else if (shift <= -30) alpha0[k][1] = 0; else { shift = 1-shift; if (shift <= 0) alpha0[k][1] = a01.mant * (1<<-shift); else { round = 1 << (shift-1); alpha0[k][1] = (a01.mant + round) >> shift; } } shift = a10.exp; if (shift >= 3) alpha1[k][0] = 0x7fffffff; else if (shift <= -30) alpha1[k][0] = 0; else { shift = 1-shift; if (shift <= 0) alpha1[k][0] = a10.mant * (1<<-shift); else { round = 1 << (shift-1); alpha1[k][0] = (a10.mant + round) >> shift; } } shift = a11.exp; if (shift >= 3) alpha1[k][1] = 0x7fffffff; else if (shift <= -30) alpha1[k][1] = 0; else { shift = 1-shift; if (shift <= 0) alpha1[k][1] = a11.mant * (1<<-shift); else { round = 1 << (shift-1); alpha1[k][1] = (a11.mant + round) >> shift; } } shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \ (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \ 0x40000000) >> 31); if (shift >= 0x20000000){ alpha1[k][0] = 0; alpha1[k][1] = 0; alpha0[k][0] = 0; alpha0[k][1] = 0; } shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \ (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \ 0x40000000) >> 31); if (shift >= 0x20000000){ alpha1[k][0] = 0; alpha1[k][1] = 0; alpha0[k][0] = 0; alpha0[k][1] = 0; } } } /// Chirp Factors (14496-3 sp04 p214) static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) { int i; int new_bw; static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 }; int64_t accu; for (i = 0; i < sbr->n_q; i++) { if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) new_bw = 1288490189; else new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; if (new_bw < ch_data->bw_array[i]){ accu = (int64_t)new_bw * 1610612736; accu += (int64_t)ch_data->bw_array[i] * 0x20000000; new_bw = (int)((accu + 0x40000000) >> 31); } else { accu = (int64_t)new_bw * 1946157056; accu += (int64_t)ch_data->bw_array[i] * 201326592; new_bw = (int)((accu + 0x40000000) >> 31); } ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw; } } /** * Calculation of levels of additional HF signal components (14496-3 sp04 p219) * and Calculation of gain (14496-3 sp04 p219) */ static void sbr_gain_calc(SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2]) { int e, k, m; // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 }, { 758351638, 1 }, { 625000000, 34 } }; for (e = 0; e < ch_data->bs_num_env; e++) { int delta = !((e == e_a[1]) || (e == e_a[0])); for (k = 0; k < sbr->n_lim; k++) { SoftFloat gain_boost, gain_max; SoftFloat sum[2]; sum[0] = sum[1] = FLOAT_0; for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m], av_add_sf(FLOAT_1, sbr->q_mapped[e][m])); sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m])); sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0))); if (!sbr->s_mapped[e][m]) { if (delta) { sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m], av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]), av_add_sf(FLOAT_1, sbr->q_mapped[e][m])))); } else { sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m], av_add_sf(FLOAT_1, sbr->e_curr[e][m]))); } } else { sbr->gain[e][m] = av_sqrt_sf( av_div_sf( av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]), av_mul_sf( av_add_sf(FLOAT_1, sbr->e_curr[e][m]), av_add_sf(FLOAT_1, sbr->q_mapped[e][m])))); } sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN); } for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]); sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]); } gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains], av_sqrt_sf( av_div_sf( av_add_sf(FLOAT_EPSILON, sum[0]), av_add_sf(FLOAT_EPSILON, sum[1])))); if (av_gt_sf(gain_max, FLOAT_100000)) gain_max = FLOAT_100000; for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { SoftFloat q_m_max = av_div_sf( av_mul_sf(sbr->q_m[e][m], gain_max), sbr->gain[e][m]); if (av_gt_sf(sbr->q_m[e][m], q_m_max)) sbr->q_m[e][m] = q_m_max; if (av_gt_sf(sbr->gain[e][m], gain_max)) sbr->gain[e][m] = gain_max; } sum[0] = sum[1] = FLOAT_0; for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]); sum[1] = av_add_sf(sum[1], av_mul_sf( av_mul_sf(sbr->e_curr[e][m], sbr->gain[e][m]), sbr->gain[e][m])); sum[1] = av_add_sf(sum[1], av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m])); if (delta && !sbr->s_m[e][m].mant) sum[1] = av_add_sf(sum[1], av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m])); } gain_boost = av_sqrt_sf( av_div_sf( av_add_sf(FLOAT_EPSILON, sum[0]), av_add_sf(FLOAT_EPSILON, sum[1]))); if (av_gt_sf(gain_boost, FLOAT_1584893192)) gain_boost = FLOAT_1584893192; for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost); sbr->q_m[e][m] = av_mul_sf(sbr->q_m[e][m], gain_boost); sbr->s_m[e][m] = av_mul_sf(sbr->s_m[e][m], gain_boost); } } } } /// Assembling HF Signals (14496-3 sp04 p220) static void sbr_hf_assemble(int Y1[38][64][2], const int X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2]) { int e, i, j, m; const int h_SL = 4 * !sbr->bs_smoothing_mode; const int kx = sbr->kx[1]; const int m_max = sbr->m[1]; static const SoftFloat h_smooth[5] = { { 715827883, -1 }, { 647472402, -1 }, { 937030863, -2 }, { 989249804, -3 }, { 546843842, -4 }, }; SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; int indexnoise = ch_data->f_indexnoise; int indexsine = ch_data->f_indexsine; if (sbr->reset) { for (i = 0; i < h_SL; i++) { memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); } } else if (h_SL) { for (i = 0; i < 4; i++) { memcpy(g_temp[i + 2 * ch_data->t_env[0]], g_temp[i + 2 * ch_data->t_env_num_env_old], sizeof(g_temp[0])); memcpy(q_temp[i + 2 * ch_data->t_env[0]], q_temp[i + 2 * ch_data->t_env_num_env_old], sizeof(q_temp[0])); } } for (e = 0; e < ch_data->bs_num_env; e++) { for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); } } for (e = 0; e < ch_data->bs_num_env; e++) { for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { SoftFloat g_filt_tab[48]; SoftFloat q_filt_tab[48]; SoftFloat *g_filt, *q_filt; if (h_SL && e != e_a[0] && e != e_a[1]) { g_filt = g_filt_tab; q_filt = q_filt_tab; for (m = 0; m < m_max; m++) { const int idx1 = i + h_SL; g_filt[m].mant = g_filt[m].exp = 0; q_filt[m].mant = q_filt[m].exp = 0; for (j = 0; j <= h_SL; j++) { g_filt[m] = av_add_sf(g_filt[m], av_mul_sf(g_temp[idx1 - j][m], h_smooth[j])); q_filt[m] = av_add_sf(q_filt[m], av_mul_sf(q_temp[idx1 - j][m], h_smooth[j])); } } } else { g_filt = g_temp[i + h_SL]; q_filt = q_temp[i]; } sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max, i + ENVELOPE_ADJUSTMENT_OFFSET); if (e != e_a[0] && e != e_a[1]) { sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e], q_filt, indexnoise, kx, m_max); } else { int idx = indexsine&1; int A = (1-((indexsine+(kx & 1))&2)); int B = (A^(-idx)) + idx; unsigned *out = &Y1[i][kx][idx]; int shift; unsigned round; SoftFloat *in = sbr->s_m[e]; for (m = 0; m+1 < m_max; m+=2) { int shift2; shift = 22 - in[m ].exp; shift2= 22 - in[m+1].exp; if (shift < 1 || shift2 < 1) { av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2); return; } if (shift < 32) { round = 1 << (shift-1); out[2*m ] += (int)(in[m ].mant * A + round) >> shift; } if (shift2 < 32) { round = 1 << (shift2-1); out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2; } } if(m_max&1) { shift = 22 - in[m ].exp; if (shift < 1) { av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift); return; } else if (shift < 32) { round = 1 << (shift-1); out[2*m ] += (int)(in[m ].mant * A + round) >> shift; } } } indexnoise = (indexnoise + m_max) & 0x1ff; indexsine = (indexsine + 1) & 3; } } ch_data->f_indexnoise = indexnoise; ch_data->f_indexsine = indexsine; } #include "aacsbr_template.c"