avfilter/vf_palette(gen|use): support palettes with alpha

This commit is contained in:
Soft Works 2021-10-13 18:33:05 +02:00 committed by Paul B Mahol
parent 3ee7250116
commit dea673d0d5
3 changed files with 230 additions and 137 deletions

View File

@ -16580,6 +16580,9 @@ Compute new histogram for each frame.
@end table
Default value is @var{full}.
@item use_alpha
Create a palette of colors with alpha components.
Setting this, will automatically disable 'reserve_transparent'.
@end table
The filter also exports the frame metadata @code{lavfi.color_quant_ratio}
@ -16658,6 +16661,11 @@ will be treated as completely opaque, and values below this threshold will be
treated as completely transparent.
The option must be an integer value in the range [0,255]. Default is @var{128}.
@item use_alpha
Apply the palette by taking alpha values into account. Only useful with
palettes that are containing multiple colors with alpha components.
Setting this will automatically disable 'alpha_treshold'.
@end table
@subsection Examples

View File

@ -59,7 +59,7 @@ enum {
};
#define NBITS 5
#define HIST_SIZE (1<<(3*NBITS))
#define HIST_SIZE (1<<(4*NBITS))
typedef struct PaletteGenContext {
const AVClass *class;
@ -67,6 +67,7 @@ typedef struct PaletteGenContext {
int max_colors;
int reserve_transparent;
int stats_mode;
int use_alpha;
AVFrame *prev_frame; // previous frame used for the diff stats_mode
struct hist_node histogram[HIST_SIZE]; // histogram/hashtable of the colors
@ -88,6 +89,7 @@ static const AVOption palettegen_options[] = {
{ "full", "compute full frame histograms", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_ALL_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
{ "diff", "compute histograms only for the part that differs from previous frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_DIFF_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
{ "single", "compute new histogram for each frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_SINGLE_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
{ "use_alpha", "create a palette including alpha values", OFFSET(use_alpha), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ NULL }
};
@ -113,15 +115,16 @@ static int cmp_##name(const void *pa, const void *pb) \
{ \
const struct color_ref * const *a = pa; \
const struct color_ref * const *b = pb; \
return (int)((*a)->color >> (8 * (2 - (pos))) & 0xff) \
- (int)((*b)->color >> (8 * (2 - (pos))) & 0xff); \
return (int)((*a)->color >> (8 * (3 - (pos))) & 0xff) \
- (int)((*b)->color >> (8 * (3 - (pos))) & 0xff); \
}
DECLARE_CMP_FUNC(r, 0)
DECLARE_CMP_FUNC(g, 1)
DECLARE_CMP_FUNC(b, 2)
DECLARE_CMP_FUNC(a, 0)
DECLARE_CMP_FUNC(r, 1)
DECLARE_CMP_FUNC(g, 2)
DECLARE_CMP_FUNC(b, 3)
static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b};
static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};
/**
* Simple color comparison for sorting the final palette
@ -143,6 +146,17 @@ static av_always_inline int diff(const uint32_t a, const uint32_t b)
return dr*dr + dg*dg + db*db;
}
static av_always_inline int diff_alpha(const uint32_t a, const uint32_t b)
{
const uint8_t c1[] = {a >> 24 & 0xff, a >> 16 & 0xff, a >> 8 & 0xff, a & 0xff};
const uint8_t c2[] = {b >> 24 & 0xff, b >> 16 & 0xff, b >> 8 & 0xff, b & 0xff};
const int da = c1[0] - c2[0];
const int dr = c1[1] - c2[1];
const int dg = c1[2] - c2[2];
const int db = c1[3] - c2[3];
return da*da + dr*dr + dg*dg + db*db;
}
/**
* Find the next box to split: pick the one with the highest variance
*/
@ -164,7 +178,10 @@ static int get_next_box_id_to_split(PaletteGenContext *s)
for (i = 0; i < box->len; i++) {
const struct color_ref *ref = s->refs[box->start + i];
variance += diff(ref->color, box->color) * ref->count;
if (s->use_alpha)
variance += (int64_t)diff_alpha(ref->color, box->color) * ref->count;
else
variance += (int64_t)diff(ref->color, box->color) * ref->count;
}
box->variance = variance;
}
@ -184,24 +201,31 @@ static int get_next_box_id_to_split(PaletteGenContext *s)
* specified box. Takes into account the weight of each color.
*/
static uint32_t get_avg_color(struct color_ref * const *refs,
const struct range_box *box)
const struct range_box *box, int use_alpha)
{
int i;
const int n = box->len;
uint64_t r = 0, g = 0, b = 0, div = 0;
uint64_t a = 0, r = 0, g = 0, b = 0, div = 0;
for (i = 0; i < n; i++) {
const struct color_ref *ref = refs[box->start + i];
r += (ref->color >> 16 & 0xff) * ref->count;
g += (ref->color >> 8 & 0xff) * ref->count;
b += (ref->color & 0xff) * ref->count;
if (use_alpha)
a += (ref->color >> 24 & 0xff) * ref->count;
r += (ref->color >> 16 & 0xff) * ref->count;
g += (ref->color >> 8 & 0xff) * ref->count;
b += (ref->color & 0xff) * ref->count;
div += ref->count;
}
if (use_alpha)
a = a / div;
r = r / div;
g = g / div;
b = b / div;
if (use_alpha)
return a<<24 | r<<16 | g<<8 | b;
return 0xffU<<24 | r<<16 | g<<8 | b;
}
@ -220,8 +244,8 @@ static void split_box(PaletteGenContext *s, struct range_box *box, int n)
av_assert0(box->len >= 1);
av_assert0(new_box->len >= 1);
box->color = get_avg_color(s->refs, box);
new_box->color = get_avg_color(s->refs, new_box);
box->color = get_avg_color(s->refs, box, s->use_alpha);
new_box->color = get_avg_color(s->refs, new_box, s->use_alpha);
box->variance = -1;
new_box->variance = -1;
}
@ -251,7 +275,7 @@ static void write_palette(AVFilterContext *ctx, AVFrame *out)
pal += pal_linesize;
}
if (s->reserve_transparent) {
if (s->reserve_transparent && !s->use_alpha) {
av_assert0(s->nb_boxes < 256);
pal[out->width - pal_linesize - 1] = AV_RB32(&s->transparency_color) >> 8;
}
@ -319,40 +343,49 @@ static AVFrame *get_palette_frame(AVFilterContext *ctx)
box = &s->boxes[box_id];
box->len = s->nb_refs;
box->sorted_by = -1;
box->color = get_avg_color(s->refs, box);
box->color = get_avg_color(s->refs, box, s->use_alpha);
box->variance = -1;
s->nb_boxes = 1;
while (box && box->len > 1) {
int i, rr, gr, br, longest;
int i, ar, rr, gr, br, longest;
uint64_t median, box_weight = 0;
/* compute the box weight (sum all the weights of the colors in the
* range) and its boundings */
uint8_t min[3] = {0xff, 0xff, 0xff};
uint8_t max[3] = {0x00, 0x00, 0x00};
uint8_t min[4] = {0xff, 0xff, 0xff, 0xff};
uint8_t max[4] = {0x00, 0x00, 0x00, 0x00};
for (i = box->start; i < box->start + box->len; i++) {
const struct color_ref *ref = s->refs[i];
const uint32_t rgb = ref->color;
const uint8_t r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff;
min[0] = FFMIN(r, min[0]), max[0] = FFMAX(r, max[0]);
min[1] = FFMIN(g, min[1]), max[1] = FFMAX(g, max[1]);
min[2] = FFMIN(b, min[2]), max[2] = FFMAX(b, max[2]);
const uint8_t a = rgb >> 24 & 0xff, r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff;
min[0] = FFMIN(a, min[0]); max[0] = FFMAX(a, max[0]);
min[1] = FFMIN(r, min[1]); max[1] = FFMAX(r, max[1]);
min[2] = FFMIN(g, min[2]); max[2] = FFMAX(g, max[2]);
min[3] = FFMIN(b, min[3]); max[3] = FFMAX(b, max[3]);
box_weight += ref->count;
}
/* define the axis to sort by according to the widest range of colors */
rr = max[0] - min[0];
gr = max[1] - min[1];
br = max[2] - min[2];
longest = 1; // pick green by default (the color the eye is the most sensitive to)
if (br >= rr && br >= gr) longest = 2;
if (rr >= gr && rr >= br) longest = 0;
if (gr >= rr && gr >= br) longest = 1; // prefer green again
ar = max[0] - min[0];
rr = max[1] - min[1];
gr = max[2] - min[2];
br = max[3] - min[3];
longest = 2; // pick green by default (the color the eye is the most sensitive to)
if (s->use_alpha) {
if (ar >= rr && ar >= br && ar >= gr) longest = 0;
if (br >= rr && br >= gr && br >= ar) longest = 3;
if (rr >= gr && rr >= br && rr >= ar) longest = 1;
if (gr >= rr && gr >= br && gr >= ar) longest = 2; // prefer green again
} else {
if (br >= rr && br >= gr) longest = 3;
if (rr >= gr && rr >= br) longest = 1;
if (gr >= rr && gr >= br) longest = 2; // prefer green again
}
ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x] sort by %c (already sorted:%c) ",
ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x %2x] sort by %c (already sorted:%c) ",
box_id, box->start, box->start + box->len - 1, box->len, box_weight,
rr, gr, br, "rgb"[longest], box->sorted_by == longest ? 'y':'n');
ar, rr, gr, br, "argb"[longest], box->sorted_by == longest ? 'y' : 'n');
/* sort the range by its longest axis if it's not already sorted */
if (box->sorted_by != longest) {
@ -394,21 +427,27 @@ static AVFrame *get_palette_frame(AVFilterContext *ctx)
* It keeps the NBITS least significant bit of each component to make it
* "random" even if the scene doesn't have much different colors.
*/
static inline unsigned color_hash(uint32_t color)
static inline unsigned color_hash(uint32_t color, int use_alpha)
{
const uint8_t r = color >> 16 & ((1<<NBITS)-1);
const uint8_t g = color >> 8 & ((1<<NBITS)-1);
const uint8_t b = color & ((1<<NBITS)-1);
if (use_alpha) {
const uint8_t a = color >> 24 & ((1 << NBITS) - 1);
return a << (NBITS * 3) | r << (NBITS * 2) | g << NBITS | b;
}
return r<<(NBITS*2) | g<<NBITS | b;
}
/**
* Locate the color in the hash table and increment its counter.
*/
static int color_inc(struct hist_node *hist, uint32_t color)
static int color_inc(struct hist_node *hist, uint32_t color, int use_alpha)
{
int i;
const unsigned hash = color_hash(color);
const unsigned hash = color_hash(color, use_alpha);
struct hist_node *node = &hist[hash];
struct color_ref *e;
@ -433,7 +472,7 @@ static int color_inc(struct hist_node *hist, uint32_t color)
* Update histogram when pixels differ from previous frame.
*/
static int update_histogram_diff(struct hist_node *hist,
const AVFrame *f1, const AVFrame *f2)
const AVFrame *f1, const AVFrame *f2, int use_alpha)
{
int x, y, ret, nb_diff_colors = 0;
@ -444,7 +483,7 @@ static int update_histogram_diff(struct hist_node *hist,
for (x = 0; x < f1->width; x++) {
if (p[x] == q[x])
continue;
ret = color_inc(hist, p[x]);
ret = color_inc(hist, p[x], use_alpha);
if (ret < 0)
return ret;
nb_diff_colors += ret;
@ -456,7 +495,7 @@ static int update_histogram_diff(struct hist_node *hist,
/**
* Simple histogram of the frame.
*/
static int update_histogram_frame(struct hist_node *hist, const AVFrame *f)
static int update_histogram_frame(struct hist_node *hist, const AVFrame *f, int use_alpha)
{
int x, y, ret, nb_diff_colors = 0;
@ -464,7 +503,7 @@ static int update_histogram_frame(struct hist_node *hist, const AVFrame *f)
const uint32_t *p = (const uint32_t *)(f->data[0] + y*f->linesize[0]);
for (x = 0; x < f->width; x++) {
ret = color_inc(hist, p[x]);
ret = color_inc(hist, p[x], use_alpha);
if (ret < 0)
return ret;
nb_diff_colors += ret;
@ -480,8 +519,8 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
PaletteGenContext *s = ctx->priv;
int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in)
: update_histogram_frame(s->histogram, in);
int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in, s->use_alpha)
: update_histogram_frame(s->histogram, in, s->use_alpha);
if (ret > 0)
s->nb_refs += ret;
@ -540,6 +579,16 @@ static int config_output(AVFilterLink *outlink)
return 0;
}
static int init(AVFilterContext *ctx)
{
PaletteGenContext* s = ctx->priv;
if (s->use_alpha && s->reserve_transparent)
s->reserve_transparent = 0;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
int i;
@ -572,6 +621,7 @@ const AVFilter ff_vf_palettegen = {
.name = "palettegen",
.description = NULL_IF_CONFIG_SMALL("Find the optimal palette for a given stream."),
.priv_size = sizeof(PaletteGenContext),
.init = init,
.uninit = uninit,
FILTER_INPUTS(palettegen_inputs),
FILTER_OUTPUTS(palettegen_outputs),

View File

@ -28,7 +28,6 @@
#include "libavutil/opt.h"
#include "libavutil/qsort.h"
#include "avfilter.h"
#include "filters.h"
#include "framesync.h"
#include "internal.h"
@ -63,7 +62,7 @@ struct color_node {
};
#define NBITS 5
#define CACHE_SIZE (1<<(3*NBITS))
#define CACHE_SIZE (1<<(4*NBITS))
struct cached_color {
uint32_t color;
@ -88,6 +87,7 @@ typedef struct PaletteUseContext {
uint32_t palette[AVPALETTE_COUNT];
int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
int trans_thresh;
int use_alpha;
int palette_loaded;
int dither;
int new;
@ -107,7 +107,7 @@ typedef struct PaletteUseContext {
} PaletteUseContext;
#define OFFSET(x) offsetof(PaletteUseContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption paletteuse_options[] = {
{ "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
{ "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
@ -120,6 +120,7 @@ static const AVOption paletteuse_options[] = {
{ "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
{ "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS },
{ "use_alpha", "use alpha channel for mapping", OFFSET(use_alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
/* following are the debug options, not part of the official API */
{ "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
@ -161,37 +162,41 @@ static av_always_inline uint32_t dither_color(uint32_t px, int er, int eg,
| av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
}
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const PaletteUseContext *s)
{
// XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
const int da = c1[0] - c2[0];
const int dr = c1[1] - c2[1];
const int dg = c1[2] - c2[2];
const int db = c1[3] - c2[3];
if (c1[0] < trans_thresh && c2[0] < trans_thresh) {
if (s->use_alpha)
return da*da + dr*dr + dg*dg + db*db;
if (c1[0] < s->trans_thresh && c2[0] < s->trans_thresh) {
return 0;
} else if (c1[0] >= trans_thresh && c2[0] >= trans_thresh) {
} else if (c1[0] >= s->trans_thresh && c2[0] >= s->trans_thresh) {
return dr*dr + dg*dg + db*db;
} else {
return 255*255 + 255*255 + 255*255;
}
}
static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
static av_always_inline uint8_t colormap_nearest_bruteforce(const PaletteUseContext *s, const uint8_t *argb)
{
int i, pal_id = -1, min_dist = INT_MAX;
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = palette[i];
const uint32_t c = s->palette[i];
if (c >> 24 >= trans_thresh) { // ignore transparent entry
if (s->use_alpha || c >> 24 >= s->trans_thresh) { // ignore transparent entry
const uint8_t palargb[] = {
palette[i]>>24 & 0xff,
palette[i]>>16 & 0xff,
palette[i]>> 8 & 0xff,
palette[i] & 0xff,
s->palette[i]>>24 & 0xff,
s->palette[i]>>16 & 0xff,
s->palette[i]>> 8 & 0xff,
s->palette[i] & 0xff,
};
const int d = diff(palargb, argb, trans_thresh);
const int d = diff(palargb, argb, s);
if (d < min_dist) {
pal_id = i;
min_dist = d;
@ -207,17 +212,17 @@ struct nearest_color {
int dist_sqd;
};
static void colormap_nearest_node(const struct color_node *map,
static void colormap_nearest_node(const PaletteUseContext *s,
const struct color_node *map,
const int node_pos,
const uint8_t *target,
const int trans_thresh,
struct nearest_color *nearest)
{
const struct color_node *kd = map + node_pos;
const int s = kd->split;
const int split = kd->split;
int dx, nearer_kd_id, further_kd_id;
const uint8_t *current = kd->val;
const int current_to_target = diff(target, current, trans_thresh);
const int current_to_target = diff(target, current, s);
if (current_to_target < nearest->dist_sqd) {
nearest->node_pos = node_pos;
@ -225,23 +230,23 @@ static void colormap_nearest_node(const struct color_node *map,
}
if (kd->left_id != -1 || kd->right_id != -1) {
dx = target[s] - current[s];
dx = target[split] - current[split];
if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
if (nearer_kd_id != -1)
colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest);
colormap_nearest_node(s, map, nearer_kd_id, target, nearest);
if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest);
colormap_nearest_node(s, map, further_kd_id, target, nearest);
}
}
static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
static av_always_inline uint8_t colormap_nearest_recursive(const PaletteUseContext *s, const struct color_node *node, const uint8_t *rgb)
{
struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
colormap_nearest_node(node, 0, rgb, trans_thresh, &res);
colormap_nearest_node(s, node, 0, rgb, &res);
return node[res.node_pos].palette_id;
}
@ -250,7 +255,7 @@ struct stack_node {
int dx2;
};
static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
static av_always_inline uint8_t colormap_nearest_iterative(const PaletteUseContext *s, const struct color_node *root, const uint8_t *target)
{
int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
struct stack_node nodes[16];
@ -260,7 +265,7 @@ static av_always_inline uint8_t colormap_nearest_iterative(const struct color_no
const struct color_node *kd = &root[cur_color_id];
const uint8_t *current = kd->val;
const int current_to_target = diff(target, current, trans_thresh);
const int current_to_target = diff(target, current, s);
/* Compare current color node to the target and update our best node if
* it's actually better. */
@ -322,10 +327,10 @@ end:
return root[best_node_id].palette_id;
}
#define COLORMAP_NEAREST(search, palette, root, target, trans_thresh) \
search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target, trans_thresh) : \
search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target, trans_thresh) : \
colormap_nearest_bruteforce(palette, target, trans_thresh)
#define COLORMAP_NEAREST(s, search, root, target) \
search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(s, root, target) : \
search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(s, root, target) : \
colormap_nearest_bruteforce(s, target)
/**
* Check if the requested color is in the cache already. If not, find it in the
@ -362,13 +367,13 @@ static av_always_inline int color_get(PaletteUseContext *s, uint32_t color,
if (!e)
return AVERROR(ENOMEM);
e->color = color;
e->pal_entry = COLORMAP_NEAREST(search_method, s->palette, s->map, argb_elts, s->trans_thresh);
e->pal_entry = COLORMAP_NEAREST(s, search_method, s->map, argb_elts);
return e->pal_entry;
}
static av_always_inline int get_dst_color_err(PaletteUseContext *s,
uint32_t c, int *er, int *eg, int *eb,
uint32_t c, int *ea, int *er, int *eg, int *eb,
const enum color_search_method search_method)
{
const uint8_t a = c >> 24 & 0xff;
@ -381,8 +386,9 @@ static av_always_inline int get_dst_color_err(PaletteUseContext *s,
return dstx;
dstc = s->palette[dstx];
if (dstx == s->transparency_index) {
*er = *eg = *eb = 0;
*ea =*er = *eg = *eb = 0;
} else {
*ea = (int)a - (int)(dstc >> 24 & 0xff);
*er = (int)r - (int)(dstc >> 16 & 0xff);
*eg = (int)g - (int)(dstc >> 8 & 0xff);
*eb = (int)b - (int)(dstc & 0xff);
@ -406,7 +412,7 @@ static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFram
for (y = y_start; y < h; y++) {
for (x = x_start; x < w; x++) {
int er, eg, eb;
int ea, er, eg, eb;
if (dither == DITHERING_BAYER) {
const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
@ -425,7 +431,7 @@ static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFram
} else if (dither == DITHERING_HECKBERT) {
const int right = x < w - 1, down = y < h - 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
if (color < 0)
return color;
@ -437,7 +443,7 @@ static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFram
} else if (dither == DITHERING_FLOYD_STEINBERG) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
if (color < 0)
return color;
@ -451,7 +457,7 @@ static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFram
} else if (dither == DITHERING_SIERRA2) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, left2 = x > x_start + 1;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
if (color < 0)
return color;
@ -470,7 +476,7 @@ static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFram
} else if (dither == DITHERING_SIERRA2_4A) {
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
if (color < 0)
return color;
@ -553,8 +559,7 @@ static int disp_tree(const struct color_node *node, const char *fname)
return 0;
}
static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh,
const enum color_search_method search_method)
static int debug_accuracy(const PaletteUseContext *s)
{
int r, g, b, ret = 0;
@ -562,19 +567,26 @@ static int debug_accuracy(const struct color_node *node, const uint32_t *palette
for (g = 0; g < 256; g++) {
for (b = 0; b < 256; b++) {
const uint8_t argb[] = {0xff, r, g, b};
const int r1 = COLORMAP_NEAREST(search_method, palette, node, argb, trans_thresh);
const int r2 = colormap_nearest_bruteforce(palette, argb, trans_thresh);
const int r1 = COLORMAP_NEAREST(s, s->color_search_method, s->map, argb);
const int r2 = colormap_nearest_bruteforce(s, argb);
if (r1 != r2) {
const uint32_t c1 = palette[r1];
const uint32_t c2 = palette[r2];
const uint8_t palargb1[] = { 0xff, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
const uint8_t palargb2[] = { 0xff, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
const int d1 = diff(palargb1, argb, trans_thresh);
const int d2 = diff(palargb2, argb, trans_thresh);
const uint32_t c1 = s->palette[r1];
const uint32_t c2 = s->palette[r2];
const uint8_t a1 = s->use_alpha ? c1>>24 & 0xff : 0xff;
const uint8_t a2 = s->use_alpha ? c2>>24 & 0xff : 0xff;
const uint8_t palargb1[] = { a1, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
const uint8_t palargb2[] = { a2, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
const int d1 = diff(palargb1, argb, s);
const int d2 = diff(palargb2, argb, s);
if (d1 != d2) {
av_log(NULL, AV_LOG_ERROR,
"/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
if (s->use_alpha)
av_log(NULL, AV_LOG_ERROR,
"/!\\ %02X%02X%02X: %d ! %d (%08"PRIX32" ! %08"PRIX32") / dist: %d ! %d\n",
r, g, b, r1, r2, c1, c2, d1, d2);
else
av_log(NULL, AV_LOG_ERROR,
"/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
ret = 1;
}
}
@ -590,8 +602,8 @@ struct color {
};
struct color_rect {
uint8_t min[3];
uint8_t max[3];
uint8_t min[4];
uint8_t max[4];
};
typedef int (*cmp_func)(const void *, const void *);
@ -612,43 +624,47 @@ DECLARE_CMP_FUNC(b, 3)
static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};
static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
const int trans_thresh,
static int get_next_color(const uint8_t *color_used, const PaletteUseContext *s,
int *component, const struct color_rect *box)
{
int wr, wg, wb;
int wa, wr, wg, wb;
int i, longest = 0;
unsigned nb_color = 0;
struct color_rect ranges;
struct color tmp_pal[256];
cmp_func cmpf;
ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;
ranges.min[0] = ranges.min[1] = ranges.min[2] = ranges.min[3]= 0xff;
ranges.max[0] = ranges.max[1] = ranges.max[2] = ranges.max[3]= 0x00;
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = palette[i];
const uint32_t c = s->palette[i];
const uint8_t a = c >> 24 & 0xff;
const uint8_t r = c >> 16 & 0xff;
const uint8_t g = c >> 8 & 0xff;
const uint8_t b = c & 0xff;
if (a < trans_thresh) {
if (!s->use_alpha && a < s->trans_thresh) {
continue;
}
if (color_used[i] || (a != 0xff) ||
r < box->min[0] || g < box->min[1] || b < box->min[2] ||
r > box->max[0] || g > box->max[1] || b > box->max[2])
if (color_used[i] || (a != 0xff && !s->use_alpha) ||
r < box->min[1] || g < box->min[2] || b < box->min[3] ||
r > box->max[1] || g > box->max[2] || b > box->max[3])
continue;
if (r < ranges.min[0]) ranges.min[0] = r;
if (g < ranges.min[1]) ranges.min[1] = g;
if (b < ranges.min[2]) ranges.min[2] = b;
if (s->use_alpha && (a < box->min[0] || a > box->max[0]))
continue;
if (r > ranges.max[0]) ranges.max[0] = r;
if (g > ranges.max[1]) ranges.max[1] = g;
if (b > ranges.max[2]) ranges.max[2] = b;
if (a < ranges.min[0]) ranges.min[0] = a;
if (r < ranges.min[1]) ranges.min[1] = r;
if (g < ranges.min[2]) ranges.min[2] = g;
if (b < ranges.min[3]) ranges.min[3] = b;
if (a > ranges.max[0]) ranges.max[0] = a;
if (r > ranges.max[1]) ranges.max[1] = r;
if (g > ranges.max[2]) ranges.max[2] = g;
if (b > ranges.max[3]) ranges.max[3] = b;
tmp_pal[nb_color].value = c;
tmp_pal[nb_color].pal_id = i;
@ -660,12 +676,22 @@ static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
return -1;
/* define longest axis that will be the split component */
wr = ranges.max[0] - ranges.min[0];
wg = ranges.max[1] - ranges.min[1];
wb = ranges.max[2] - ranges.min[2];
if (wr >= wg && wr >= wb) longest = 1;
if (wg >= wr && wg >= wb) longest = 2;
if (wb >= wr && wb >= wg) longest = 3;
wa = ranges.max[0] - ranges.min[0];
wr = ranges.max[1] - ranges.min[1];
wg = ranges.max[2] - ranges.min[2];
wb = ranges.max[3] - ranges.min[3];
if (s->use_alpha) {
if (wa >= wr && wa >= wb && wa >= wg) longest = 0;
if (wr >= wg && wr >= wb && wr >= wa) longest = 1;
if (wg >= wr && wg >= wb && wg >= wa) longest = 2;
if (wb >= wr && wb >= wg && wb >= wa) longest = 3;
} else {
if (wr >= wg && wr >= wb) longest = 1;
if (wg >= wr && wg >= wb) longest = 2;
if (wb >= wr && wb >= wg) longest = 3;
}
cmpf = cmp_funcs[longest];
*component = longest;
@ -678,8 +704,7 @@ static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
static int colormap_insert(struct color_node *map,
uint8_t *color_used,
int *nb_used,
const uint32_t *palette,
const int trans_thresh,
const PaletteUseContext *s,
const struct color_rect *box)
{
uint32_t c;
@ -687,14 +712,14 @@ static int colormap_insert(struct color_node *map,
int node_left_id = -1, node_right_id = -1;
struct color_node *node;
struct color_rect box1, box2;
const int pal_id = get_next_color(color_used, palette, trans_thresh, &component, box);
const int pal_id = get_next_color(color_used, s, &component, box);
if (pal_id < 0)
return -1;
/* create new node with that color */
cur_id = (*nb_used)++;
c = palette[pal_id];
c = s->palette[pal_id];
node = &map[cur_id];
node->split = component;
node->palette_id = pal_id;
@ -707,13 +732,13 @@ static int colormap_insert(struct color_node *map,
/* get the two boxes this node creates */
box1 = box2 = *box;
box1.max[component-1] = node->val[component];
box2.min[component-1] = FFMIN(node->val[component] + 1, 255);
box1.max[component] = node->val[component];
box2.min[component] = FFMIN(node->val[component] + 1, 255);
node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1);
node_left_id = colormap_insert(map, color_used, nb_used, s, &box1);
if (box2.min[component-1] <= box2.max[component-1])
node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2);
if (box2.min[component] <= box2.max[component])
node_right_id = colormap_insert(map, color_used, nb_used, s, &box2);
node->left_id = node_left_id;
node->right_id = node_right_id;
@ -728,6 +753,13 @@ static int cmp_pal_entry(const void *a, const void *b)
return c1 - c2;
}
static int cmp_pal_entry_alpha(const void *a, const void *b)
{
const int c1 = *(const uint32_t *)a;
const int c2 = *(const uint32_t *)b;
return c1 - c2;
}
static void load_colormap(PaletteUseContext *s)
{
int i, nb_used = 0;
@ -735,12 +767,13 @@ static void load_colormap(PaletteUseContext *s)
uint32_t last_color = 0;
struct color_rect box;
if (s->transparency_index >= 0) {
if (!s->use_alpha && s->transparency_index >= 0) {
FFSWAP(uint32_t, s->palette[s->transparency_index], s->palette[255]);
}
/* disable transparent colors and dups */
qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette), cmp_pal_entry);
qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette),
s->use_alpha ? cmp_pal_entry_alpha : cmp_pal_entry);
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = s->palette[i];
@ -749,22 +782,22 @@ static void load_colormap(PaletteUseContext *s)
continue;
}
last_color = c;
if (c >> 24 < s->trans_thresh) {
if (!s->use_alpha && c >> 24 < s->trans_thresh) {
color_used[i] = 1; // ignore transparent color(s)
continue;
}
}
box.min[0] = box.min[1] = box.min[2] = 0x00;
box.max[0] = box.max[1] = box.max[2] = 0xff;
box.min[0] = box.min[1] = box.min[2] = box.min[3] = 0x00;
box.max[0] = box.max[1] = box.max[2] = box.max[3] = 0xff;
colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box);
colormap_insert(s->map, color_used, &nb_used, s, &box);
if (s->dot_filename)
disp_tree(s->map, s->dot_filename);
if (s->debug_accuracy) {
if (!debug_accuracy(s->map, s->palette, s->trans_thresh, s->color_search_method))
if (!debug_accuracy(s))
av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
}
}
@ -778,16 +811,18 @@ static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
uint8_t *src2 = in2->data[0];
const int src1_linesize = in1->linesize[0] >> 2;
const int src2_linesize = in2->linesize[0];
const float div = in1->width * in1->height * 3;
const float div = in1->width * in1->height * s->use_alpha ? 4 : 3;
unsigned mean_err = 0;
for (y = 0; y < in1->height; y++) {
for (x = 0; x < in1->width; x++) {
const uint32_t c1 = src1[x];
const uint32_t c2 = palette[src2[x]];
const uint8_t argb1[] = {0xff, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
const uint8_t argb2[] = {0xff, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
mean_err += diff(argb1, argb2, s->trans_thresh);
const uint8_t a1 = s->use_alpha ? c1>>24 & 0xff : 0xff;
const uint8_t a2 = s->use_alpha ? c2>>24 & 0xff : 0xff;
const uint8_t argb1[] = {a1, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
const uint8_t argb2[] = {a2, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
mean_err += diff(argb1, argb2, s);
}
src1 += src1_linesize;
src2 += src2_linesize;
@ -987,7 +1022,7 @@ static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
for (y = 0; y < palette_frame->height; y++) {
for (x = 0; x < palette_frame->width; x++) {
s->palette[i] = p[x];
if (p[x]>>24 < s->trans_thresh) {
if (!s->use_alpha && p[x]>>24 < s->trans_thresh) {
s->transparency_index = i; // we are assuming at most one transparent color in palette
}
i++;