ffmpeg/libavfilter/vf_nlmeans_opencl.c

442 lines
16 KiB
C
Raw Normal View History

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "internal.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"
// TODO:
// the integral image may overflow 32bit, consider using 64bit
static const enum AVPixelFormat supported_formats[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_GBRP,
};
static int is_format_supported(enum AVPixelFormat fmt)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++)
if (supported_formats[i] == fmt)
return 1;
return 0;
}
typedef struct NLMeansOpenCLContext {
OpenCLFilterContext ocf;
int initialised;
cl_kernel vert_kernel;
cl_kernel horiz_kernel;
cl_kernel accum_kernel;
cl_kernel average_kernel;
cl_mem integral_img;
cl_mem weight;
cl_mem sum;
cl_mem overflow; // overflow in integral image?
double sigma;
float h;
int chroma_w;
int chroma_h;
int patch_size;
int patch_size_uv;
int research_size;
int research_size_uv;
cl_command_queue command_queue;
} NLMeansOpenCLContext;
static int nlmeans_opencl_init(AVFilterContext *avctx, int width, int height)
{
NLMeansOpenCLContext *ctx = avctx->priv;
cl_int cle;
int err;
int weight_buf_size = width * height * sizeof(float);
ctx->h = ctx->sigma * 10;
if (!(ctx->research_size & 1)) {
ctx->research_size |= 1;
av_log(avctx, AV_LOG_WARNING,
"research_size should be odd, set to %d",
ctx->research_size);
}
if (!(ctx->patch_size & 1)) {
ctx->patch_size |= 1;
av_log(avctx, AV_LOG_WARNING,
"patch_size should be odd, set to %d",
ctx->patch_size);
}
if (!ctx->research_size_uv)
ctx->research_size_uv = ctx->research_size;
if (!ctx->patch_size_uv)
ctx->patch_size_uv = ctx->patch_size;
err = ff_opencl_filter_load_program(avctx, &ff_opencl_source_nlmeans, 1);
if (err < 0)
goto fail;
ctx->command_queue = clCreateCommandQueue(ctx->ocf.hwctx->context,
ctx->ocf.hwctx->device_id,
0, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL "
"command queue %d.\n", cle);
ctx->vert_kernel = clCreateKernel(ctx->ocf.program,
"vert_sum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"vert_sum kernel %d.\n", cle);
ctx->horiz_kernel = clCreateKernel(ctx->ocf.program,
"horiz_sum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"horiz_sum kernel %d.\n", cle);
ctx->accum_kernel = clCreateKernel(ctx->ocf.program,
"weight_accum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"accum kernel %d.\n", cle);
ctx->average_kernel = clCreateKernel(ctx->ocf.program,
"average", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"average kernel %d.\n", cle);
ctx->integral_img = clCreateBuffer(ctx->ocf.hwctx->context, 0,
4 * width * height * sizeof(cl_int),
NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"integral image %d.\n", cle);
ctx->weight = clCreateBuffer(ctx->ocf.hwctx->context, 0,
weight_buf_size, NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"weight buffer %d.\n", cle);
ctx->sum = clCreateBuffer(ctx->ocf.hwctx->context, 0,
weight_buf_size, NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"sum buffer %d.\n", cle);
ctx->overflow = clCreateBuffer(ctx->ocf.hwctx->context, 0,
sizeof(cl_int), NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"overflow buffer %d.\n", cle);
ctx->initialised = 1;
return 0;
fail:
CL_RELEASE_KERNEL(ctx->vert_kernel);
CL_RELEASE_KERNEL(ctx->horiz_kernel);
CL_RELEASE_KERNEL(ctx->accum_kernel);
CL_RELEASE_KERNEL(ctx->average_kernel);
CL_RELEASE_MEMORY(ctx->integral_img);
CL_RELEASE_MEMORY(ctx->weight);
CL_RELEASE_MEMORY(ctx->sum);
CL_RELEASE_MEMORY(ctx->overflow);
CL_RELEASE_QUEUE(ctx->command_queue);
return err;
}
static int nlmeans_plane(AVFilterContext *avctx, cl_mem dst, cl_mem src,
cl_int width, cl_int height, cl_int p, cl_int r)
{
NLMeansOpenCLContext *ctx = avctx->priv;
const float zero = 0.0f;
const size_t worksize1[] = {height};
const size_t worksize2[] = {width};
const size_t worksize3[2] = {width, height};
int i, dx, dy, err = 0, weight_buf_size;
cl_int cle;
int nb_pixel, *tmp = NULL, idx = 0;
cl_int *dxdy = NULL;
weight_buf_size = width * height * sizeof(float);
cle = clEnqueueFillBuffer(ctx->command_queue, ctx->weight,
&zero, sizeof(float), 0, weight_buf_size,
0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill weight buffer: %d.\n",
cle);
cle = clEnqueueFillBuffer(ctx->command_queue, ctx->sum,
&zero, sizeof(float), 0, weight_buf_size,
0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill sum buffer: %d.\n",
cle);
nb_pixel = (2 * r + 1) * (2 * r + 1) - 1;
dxdy = av_malloc(nb_pixel * 2 * sizeof(cl_int));
tmp = av_malloc(nb_pixel * 2 * sizeof(int));
if (!dxdy || !tmp)
goto fail;
for (dx = -r; dx <= r; dx++) {
for (dy = -r; dy <= r; dy++) {
if (dx || dy) {
tmp[idx++] = dx;
tmp[idx++] = dy;
}
}
}
// repack dx/dy seperately, as we want to do four pairs of dx/dy in a batch
for (i = 0; i < nb_pixel / 4; i++) {
dxdy[i * 8] = tmp[i * 8]; // dx0
dxdy[i * 8 + 1] = tmp[i * 8 + 2]; // dx1
dxdy[i * 8 + 2] = tmp[i * 8 + 4]; // dx2
dxdy[i * 8 + 3] = tmp[i * 8 + 6]; // dx3
dxdy[i * 8 + 4] = tmp[i * 8 + 1]; // dy0
dxdy[i * 8 + 5] = tmp[i * 8 + 3]; // dy1
dxdy[i * 8 + 6] = tmp[i * 8 + 5]; // dy2
dxdy[i * 8 + 7] = tmp[i * 8 + 7]; // dy3
}
av_freep(&tmp);
for (i = 0; i < nb_pixel / 4; i++) {
cl_int *dx_cur = dxdy + 8 * i;
cl_int *dy_cur = dxdy + 8 * i + 4;
// horizontal pass
// integral(x,y) = sum([u(v,y) - u(v+dx,y+dy)]^2) for v in [0, x]
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 0, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 1, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 2, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 3, cl_int, &height);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 4, cl_int4, dx_cur);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 5, cl_int4, dy_cur);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->horiz_kernel, 1,
NULL, worksize1, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue horiz_kernel: %d.\n",
cle);
// vertical pass
// integral(x, y) = sum(integral(x, v)) for v in [0, y]
CL_SET_KERNEL_ARG(ctx->vert_kernel, 0, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 1, cl_mem, &ctx->overflow);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 2, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 3, cl_int, &height);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->vert_kernel,
1, NULL, worksize2, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue vert_kernel: %d.\n",
cle);
// accumulate weights
CL_SET_KERNEL_ARG(ctx->accum_kernel, 0, cl_mem, &ctx->sum);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 1, cl_mem, &ctx->weight);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 2, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 3, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 4, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 5, cl_int, &height);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 6, cl_int, &p);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 7, cl_float, &ctx->h);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 8, cl_int4, dx_cur);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 9, cl_int4, dy_cur);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->accum_kernel,
2, NULL, worksize3, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue kernel: %d.\n", cle);
}
av_freep(&dxdy);
// average
CL_SET_KERNEL_ARG(ctx->average_kernel, 0, cl_mem, &dst);
CL_SET_KERNEL_ARG(ctx->average_kernel, 1, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->average_kernel, 2, cl_mem, &ctx->sum);
CL_SET_KERNEL_ARG(ctx->average_kernel, 3, cl_mem, &ctx->weight);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->average_kernel, 2,
NULL, worksize3, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue average kernel: %d.\n",
cle);
cle = clFlush(ctx->command_queue);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to flush command queue: %d.\n", cle);
fail:
if (tmp)
av_freep(&tmp);
if (dxdy)
av_freep(&dxdy);
return err;
}
static int nlmeans_opencl_filter_frame(AVFilterLink *inlink, AVFrame *input)
{
AVFilterContext *avctx = inlink->dst;
AVFilterLink *outlink = avctx->outputs[0];
NLMeansOpenCLContext *ctx = avctx->priv;
AVFrame *output = NULL;
AVHWFramesContext *input_frames_ctx;
const AVPixFmtDescriptor *desc;
enum AVPixelFormat in_format;
cl_mem src, dst;
const cl_int zero = 0;
int w, h, err, cle, overflow, p, patch, research;
av_log(ctx, AV_LOG_DEBUG, "Filter input: %s, %ux%u (%"PRId64").\n",
av_get_pix_fmt_name(input->format),
input->width, input->height, input->pts);
if (!input->hw_frames_ctx)
return AVERROR(EINVAL);
input_frames_ctx = (AVHWFramesContext*)input->hw_frames_ctx->data;
in_format = input_frames_ctx->sw_format;
output = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!output) {
err = AVERROR(ENOMEM);
goto fail;
}
err = av_frame_copy_props(output, input);
if (err < 0)
goto fail;
if (!ctx->initialised) {
desc = av_pix_fmt_desc_get(in_format);
if (!is_format_supported(in_format)) {
err = AVERROR(EINVAL);
av_log(avctx, AV_LOG_ERROR, "input format %s not supported\n",
av_get_pix_fmt_name(in_format));
goto fail;
}
ctx->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
ctx->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
err = nlmeans_opencl_init(avctx, inlink->w, inlink->h);
if (err < 0)
goto fail;
}
cle = clEnqueueWriteBuffer(ctx->command_queue, ctx->overflow, CL_FALSE,
0, sizeof(cl_int), &zero, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to initialize overflow"
"detection buffer %d.\n", cle);
for (p = 0; p < FF_ARRAY_ELEMS(output->data); p++) {
src = (cl_mem) input->data[p];
dst = (cl_mem) output->data[p];
if (!dst)
break;
av_assert0(src);
w = p ? ctx->chroma_w : inlink->w;
h = p ? ctx->chroma_h : inlink->h;
patch = (p ? ctx->patch_size_uv : ctx->patch_size) / 2;
research = (p ? ctx->research_size_uv : ctx->research_size) / 2;
err = nlmeans_plane(avctx, dst, src, w, h, patch, research);
if (err < 0)
goto fail;
}
// overflow occurred?
cle = clEnqueueReadBuffer(ctx->command_queue, ctx->overflow, CL_FALSE,
0, sizeof(cl_int), &overflow, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read overflow: %d.\n", cle);
cle = clFinish(ctx->command_queue);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to finish kernel: %d.\n", cle);
if (overflow > 0)
av_log(avctx, AV_LOG_ERROR, "integral image overflow %d\n", overflow);
av_frame_free(&input);
av_log(ctx, AV_LOG_DEBUG, "Filter output: %s, %ux%u (%"PRId64").\n",
av_get_pix_fmt_name(output->format),
output->width, output->height, output->pts);
return ff_filter_frame(outlink, output);
fail:
clFinish(ctx->command_queue);
av_frame_free(&input);
av_frame_free(&output);
return err;
}
static av_cold void nlmeans_opencl_uninit(AVFilterContext *avctx)
{
NLMeansOpenCLContext *ctx = avctx->priv;
cl_int cle;
CL_RELEASE_KERNEL(ctx->vert_kernel);
CL_RELEASE_KERNEL(ctx->horiz_kernel);
CL_RELEASE_KERNEL(ctx->accum_kernel);
CL_RELEASE_KERNEL(ctx->average_kernel);
CL_RELEASE_MEMORY(ctx->integral_img);
CL_RELEASE_MEMORY(ctx->weight);
CL_RELEASE_MEMORY(ctx->sum);
CL_RELEASE_MEMORY(ctx->overflow);
CL_RELEASE_QUEUE(ctx->command_queue);
ff_opencl_filter_uninit(avctx);
}
#define OFFSET(x) offsetof(NLMeansOpenCLContext, x)
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption nlmeans_opencl_options[] = {
{ "s", "denoising strength", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 1.0, 30.0, FLAGS },
{ "p", "patch size", OFFSET(patch_size), AV_OPT_TYPE_INT, { .i64 = 2*3+1 }, 0, 99, FLAGS },
{ "pc", "patch size for chroma planes", OFFSET(patch_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS },
{ "r", "research window", OFFSET(research_size), AV_OPT_TYPE_INT, { .i64 = 7*2+1 }, 0, 99, FLAGS },
{ "rc", "research window for chroma planes", OFFSET(research_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(nlmeans_opencl);
static const AVFilterPad nlmeans_opencl_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = &nlmeans_opencl_filter_frame,
.config_props = &ff_opencl_filter_config_input,
},
};
static const AVFilterPad nlmeans_opencl_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = &ff_opencl_filter_config_output,
},
};
const AVFilter ff_vf_nlmeans_opencl = {
.name = "nlmeans_opencl",
.description = NULL_IF_CONFIG_SMALL("Non-local means denoiser through OpenCL"),
.priv_size = sizeof(NLMeansOpenCLContext),
.priv_class = &nlmeans_opencl_class,
.init = &ff_opencl_filter_init,
.uninit = &nlmeans_opencl_uninit,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(nlmeans_opencl_inputs),
FILTER_OUTPUTS(nlmeans_opencl_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(&ff_opencl_filter_query_formats),
.flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
};