ffmpeg/libavfilter/avf_showcqt.c

586 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 Muhammad Faiz <mfcc64@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavcodec/avfft.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/opt.h"
#include "libavutil/xga_font_data.h"
#include "libavutil/qsort.h"
#include "libavutil/time.h"
#include "avfilter.h"
#include "internal.h"
#include <math.h>
#include <stdlib.h>
/* this filter is designed to do 16 bins/semitones constant Q transform with Brown-Puckette algorithm
* start from E0 to D#10 (10 octaves)
* so there are 16 bins/semitones * 12 semitones/octaves * 10 octaves = 1920 bins
* match with full HD resolution */
#define VIDEO_WIDTH 1920
#define VIDEO_HEIGHT 1080
#define FONT_HEIGHT 32
#define SPECTOGRAM_HEIGHT ((VIDEO_HEIGHT-FONT_HEIGHT)/2)
#define SPECTOGRAM_START (VIDEO_HEIGHT-SPECTOGRAM_HEIGHT)
#define BASE_FREQ 20.051392800492
#define COEFF_CLAMP 1.0e-4
typedef struct {
FFTSample value;
int index;
} SparseCoeff;
static inline int qsort_sparsecoeff(const SparseCoeff *a, const SparseCoeff *b)
{
if (fabsf(a->value) >= fabsf(b->value))
return 1;
else
return -1;
}
typedef struct {
const AVClass *class;
AVFrame *outpicref;
FFTContext *fft_context;
FFTComplex *fft_data;
FFTComplex *fft_result_left;
FFTComplex *fft_result_right;
SparseCoeff *coeff_sort;
SparseCoeff *coeffs[VIDEO_WIDTH];
int coeffs_len[VIDEO_WIDTH];
uint8_t font_color[VIDEO_WIDTH];
uint8_t spectogram[SPECTOGRAM_HEIGHT][VIDEO_WIDTH][3];
int64_t frame_count;
int spectogram_count;
int spectogram_index;
int fft_bits;
int req_fullfilled;
int remaining_fill;
double volume;
double timeclamp; /* lower timeclamp, time-accurate, higher timeclamp, freq-accurate (at low freq)*/
float coeffclamp; /* lower coeffclamp, more precise, higher coeffclamp, faster */
float gamma; /* lower gamma, more contrast, higher gamma, more range */
int fps; /* the required fps is so strict, so it's enough to be int, but 24000/1001 etc cannot be encoded */
int count; /* fps * count = transform rate */
} ShowCQTContext;
#define OFFSET(x) offsetof(ShowCQTContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showcqt_options[] = {
{ "volume", "set volume", OFFSET(volume), AV_OPT_TYPE_DOUBLE, { .dbl = 16 }, 0.1, 100, FLAGS },
{ "timeclamp", "set timeclamp", OFFSET(timeclamp), AV_OPT_TYPE_DOUBLE, { .dbl = 0.17 }, 0.1, 1.0, FLAGS },
{ "coeffclamp", "set coeffclamp", OFFSET(coeffclamp), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, 0.1, 10, FLAGS },
{ "gamma", "set gamma", OFFSET(gamma), AV_OPT_TYPE_FLOAT, { .dbl = 3 }, 1, 7, FLAGS },
{ "fps", "set video fps", OFFSET(fps), AV_OPT_TYPE_INT, { .i64 = 25 }, 10, 100, FLAGS },
{ "count", "set number of transform per frame", OFFSET(count), AV_OPT_TYPE_INT, { .i64 = 6 }, 1, 30, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showcqt);
static av_cold void uninit(AVFilterContext *ctx)
{
int k;
ShowCQTContext *s = ctx->priv;
av_fft_end(s->fft_context);
s->fft_context = NULL;
for (k = 0; k < VIDEO_WIDTH; k++)
av_freep(&s->coeffs[k]);
av_freep(&s->fft_data);
av_freep(&s->fft_result_left);
av_freep(&s->fft_result_right);
av_freep(&s->coeff_sort);
av_frame_free(&s->outpicref);
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
static const int64_t channel_layouts[] = { AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_STEREO_DOWNMIX, -1 };
static const int samplerates[] = { 44100, 48000, -1 };
/* set input audio formats */
formats = ff_make_format_list(sample_fmts);
if (!formats)
return AVERROR(ENOMEM);
ff_formats_ref(formats, &inlink->out_formats);
layouts = avfilter_make_format64_list(channel_layouts);
if (!layouts)
return AVERROR(ENOMEM);
ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
formats = ff_make_format_list(samplerates);
if (!formats)
return AVERROR(ENOMEM);
ff_formats_ref(formats, &inlink->out_samplerates);
/* set output video format */
formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
ff_formats_ref(formats, &outlink->in_formats);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowCQTContext *s = ctx->priv;
int fft_len, k, x, y;
int num_coeffs = 0;
int rate = inlink->sample_rate;
double max_len = rate * (double) s->timeclamp;
int64_t start_time, end_time;
s->fft_bits = ceil(log2(max_len));
fft_len = 1 << s->fft_bits;
if (rate % (s->fps * s->count))
{
av_log(ctx, AV_LOG_ERROR, "Rate (%u) is not divisible by fps*count (%u*%u)\n", rate, s->fps, s->count);
return AVERROR(EINVAL);
}
s->fft_data = av_malloc_array(fft_len, sizeof(*s->fft_data));
s->coeff_sort = av_malloc_array(fft_len, sizeof(*s->coeff_sort));
s->fft_result_left = av_malloc_array(fft_len, sizeof(*s->fft_result_left));
s->fft_result_right = av_malloc_array(fft_len, sizeof(*s->fft_result_right));
s->fft_context = av_fft_init(s->fft_bits, 0);
if (!s->fft_data || !s->coeff_sort || !s->fft_result_left || !s->fft_result_right || !s->fft_context)
return AVERROR(ENOMEM);
/* initializing font */
for (x = 0; x < VIDEO_WIDTH; x++)
{
if (x >= (12*3+8)*16 && x < (12*4+8)*16)
{
float fx = (x-(12*3+8)*16) * (1.0f/192.0f);
float sv = sinf(M_PI*fx);
s->font_color[x] = sv*sv*255.0f + 0.5f;
}
else
s->font_color[x] = 0;
}
av_log(ctx, AV_LOG_INFO, "Calculating spectral kernel, please wait\n");
start_time = av_gettime_relative();
for (k = 0; k < VIDEO_WIDTH; k++)
{
int hlen = fft_len >> 1;
float total = 0;
float partial = 0;
double freq = BASE_FREQ * exp2(k * (1.0/192.0));
double tlen = rate * (24.0 * 16.0) /freq;
/* a window function from Albert H. Nuttall,
* "Some Windows with Very Good Sidelobe Behavior"
* -93.32 dB peak sidelobe and 18 dB/octave asymptotic decay
* coefficient normalized to a0 = 1 */
double a0 = 0.355768;
double a1 = 0.487396/a0;
double a2 = 0.144232/a0;
double a3 = 0.012604/a0;
double sv_step, cv_step, sv, cv;
double sw_step, cw_step, sw, cw, w;
tlen = tlen * max_len / (tlen + max_len);
s->fft_data[0].re = 0;
s->fft_data[0].im = 0;
s->fft_data[hlen].re = (1.0 + a1 + a2 + a3) * (1.0/tlen) * s->volume * (1.0/fft_len);
s->fft_data[hlen].im = 0;
sv_step = sv = sin(2.0*M_PI*freq*(1.0/rate));
cv_step = cv = cos(2.0*M_PI*freq*(1.0/rate));
/* also optimizing window func */
sw_step = sw = sin(2.0*M_PI*(1.0/tlen));
cw_step = cw = cos(2.0*M_PI*(1.0/tlen));
for (x = 1; x < 0.5 * tlen; x++)
{
double cv_tmp, cw_tmp;
double cw2, cw3, sw2;
cw2 = cw * cw - sw * sw;
sw2 = cw * sw + sw * cw;
cw3 = cw * cw2 - sw * sw2;
w = (1.0 + a1 * cw + a2 * cw2 + a3 * cw3) * (1.0/tlen) * s->volume * (1.0/fft_len);
s->fft_data[hlen + x].re = w * cv;
s->fft_data[hlen + x].im = w * sv;
s->fft_data[hlen - x].re = s->fft_data[hlen + x].re;
s->fft_data[hlen - x].im = -s->fft_data[hlen + x].im;
cv_tmp = cv * cv_step - sv * sv_step;
sv = sv * cv_step + cv * sv_step;
cv = cv_tmp;
cw_tmp = cw * cw_step - sw * sw_step;
sw = sw * cw_step + cw * sw_step;
cw = cw_tmp;
}
for (; x < hlen; x++)
{
s->fft_data[hlen + x].re = 0;
s->fft_data[hlen + x].im = 0;
s->fft_data[hlen - x].re = 0;
s->fft_data[hlen - x].im = 0;
}
av_fft_permute(s->fft_context, s->fft_data);
av_fft_calc(s->fft_context, s->fft_data);
for (x = 0; x < fft_len; x++)
{
s->coeff_sort[x].index = x;
s->coeff_sort[x].value = s->fft_data[x].re;
}
AV_QSORT(s->coeff_sort, fft_len, SparseCoeff, qsort_sparsecoeff);
for (x = 0; x < fft_len; x++)
total += fabsf(s->coeff_sort[x].value);
for (x = 0; x < fft_len; x++)
{
partial += fabsf(s->coeff_sort[x].value);
if (partial > (total * s->coeffclamp * COEFF_CLAMP))
{
s->coeffs_len[k] = fft_len - x;
num_coeffs += s->coeffs_len[k];
s->coeffs[k] = av_malloc_array(s->coeffs_len[k], sizeof(*s->coeffs[k]));
if (!s->coeffs[k])
return AVERROR(ENOMEM);
for (y = 0; y < s->coeffs_len[k]; y++)
s->coeffs[k][y] = s->coeff_sort[x+y];
break;
}
}
}
end_time = av_gettime_relative();
av_log(ctx, AV_LOG_INFO, "Elapsed time %.6f s (fft_len=%u, num_coeffs=%u)\n", 1e-6 * (end_time-start_time), fft_len, num_coeffs);
outlink->w = VIDEO_WIDTH;
outlink->h = VIDEO_HEIGHT;
s->req_fullfilled = 0;
s->spectogram_index = 0;
s->frame_count = 0;
s->spectogram_count = 0;
s->remaining_fill = fft_len >> 1;
memset(s->spectogram, 0, VIDEO_WIDTH * SPECTOGRAM_HEIGHT * 3);
memset(s->fft_data, 0, fft_len * sizeof(*s->fft_data));
s->outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->outpicref)
return AVERROR(ENOMEM);
outlink->sample_aspect_ratio = av_make_q(1, 1);
outlink->time_base = av_make_q(1, s->fps);
outlink->frame_rate = av_make_q(s->fps, 1);
return 0;
}
static int plot_cqt(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
ShowCQTContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int fft_len = 1 << s->fft_bits;
FFTSample result[VIDEO_WIDTH][4];
int x, y, ret = 0;
/* real part contains left samples, imaginary part contains right samples */
memcpy(s->fft_result_left, s->fft_data, fft_len * sizeof(*s->fft_data));
av_fft_permute(s->fft_context, s->fft_result_left);
av_fft_calc(s->fft_context, s->fft_result_left);
/* separate left and right, (and multiply by 2.0) */
s->fft_result_right[0].re = 2.0f * s->fft_result_left[0].im;
s->fft_result_right[0].im = 0;
s->fft_result_left[0].re = 2.0f * s->fft_result_left[0].re;
s->fft_result_left[0].im = 0;
for (x = 1; x <= (fft_len >> 1); x++)
{
FFTSample tmpy = s->fft_result_left[fft_len-x].im - s->fft_result_left[x].im;
s->fft_result_right[x].re = s->fft_result_left[x].im + s->fft_result_left[fft_len-x].im;
s->fft_result_right[x].im = s->fft_result_left[x].re - s->fft_result_left[fft_len-x].re;
s->fft_result_right[fft_len-x].re = s->fft_result_right[x].re;
s->fft_result_right[fft_len-x].im = -s->fft_result_right[x].im;
s->fft_result_left[x].re = s->fft_result_left[x].re + s->fft_result_left[fft_len-x].re;
s->fft_result_left[x].im = tmpy;
s->fft_result_left[fft_len-x].re = s->fft_result_left[x].re;
s->fft_result_left[fft_len-x].im = -s->fft_result_left[x].im;
}
/* calculating cqt */
for (x = 0; x < VIDEO_WIDTH; x++)
{
int u;
float g = 1.0f / s->gamma;
FFTComplex l = {0,0};
FFTComplex r = {0,0};
for (u = 0; u < s->coeffs_len[x]; u++)
{
FFTSample value = s->coeffs[x][u].value;
int index = s->coeffs[x][u].index;
l.re += value * s->fft_result_left[index].re;
l.im += value * s->fft_result_left[index].im;
r.re += value * s->fft_result_right[index].re;
r.im += value * s->fft_result_right[index].im;
}
/* result is power, not amplitude */
result[x][0] = l.re * l.re + l.im * l.im;
result[x][2] = r.re * r.re + r.im * r.im;
result[x][1] = 0.5f * (result[x][0] + result[x][2]);
result[x][3] = result[x][1];
result[x][0] = 255.0f * powf(FFMIN(1.0f,result[x][0]), g);
result[x][1] = 255.0f * powf(FFMIN(1.0f,result[x][1]), g);
result[x][2] = 255.0f * powf(FFMIN(1.0f,result[x][2]), g);
}
for (x = 0; x < VIDEO_WIDTH; x++)
{
s->spectogram[s->spectogram_index][x][0] = result[x][0] + 0.5f;
s->spectogram[s->spectogram_index][x][1] = result[x][1] + 0.5f;
s->spectogram[s->spectogram_index][x][2] = result[x][2] + 0.5f;
}
/* drawing */
if (!s->spectogram_count)
{
uint8_t *data = (uint8_t*) s->outpicref->data[0];
int linesize = s->outpicref->linesize[0];
float rcp_result[VIDEO_WIDTH];
for (x = 0; x < VIDEO_WIDTH; x++)
rcp_result[x] = 1.0f / (result[x][3]+0.0001f);
/* drawing bar */
for (y = 0; y < SPECTOGRAM_HEIGHT; y++)
{
float height = (SPECTOGRAM_HEIGHT - y) * (1.0f/SPECTOGRAM_HEIGHT);
uint8_t *lineptr = data + y * linesize;
for (x = 0; x < VIDEO_WIDTH; x++)
{
float mul;
if (result[x][3] <= height)
{
*lineptr++ = 0;
*lineptr++ = 0;
*lineptr++ = 0;
}
else
{
mul = (result[x][3] - height) * rcp_result[x];
*lineptr++ = mul * result[x][0] + 0.5f;
*lineptr++ = mul * result[x][1] + 0.5f;
*lineptr++ = mul * result[x][2] + 0.5f;
}
}
}
/* drawing font */
for (y = 0; y < FONT_HEIGHT; y++)
{
uint8_t *lineptr = data + (SPECTOGRAM_HEIGHT + y) * linesize;
memcpy(lineptr, s->spectogram[s->spectogram_index], VIDEO_WIDTH*3);
}
for (x = 0; x < VIDEO_WIDTH; x += VIDEO_WIDTH/10)
{
int u;
static const char str[] = "EF G A BC D ";
uint8_t *startptr = data + SPECTOGRAM_HEIGHT * linesize + x * 3;
for (u = 0; str[u]; u++)
{
int v;
for (v = 0; v < 16; v++)
{
uint8_t *p = startptr + 2 * v * linesize + 16 * 3 * u;
int ux = x + 16 * u;
int mask;
for (mask = 0x80; mask; mask >>= 1)
{
if (mask & avpriv_vga16_font[str[u] * 16 + v])
{
p[0] = p[linesize] = 255 - s->font_color[ux];
p[1] = p[linesize+1] = 0;
p[2] = p[linesize+2] = s->font_color[ux];
p[3] = p[linesize+3] = 255 - s->font_color[ux+1];
p[4] = p[linesize+4] = 0;
p[5] = p[linesize+5] = s->font_color[ux+1];
}
p += 6;
ux += 2;
}
}
}
}
/* drawing spectogram/sonogram */
if (linesize == VIDEO_WIDTH * 3)
{
int total_length = VIDEO_WIDTH * SPECTOGRAM_HEIGHT * 3;
int back_length = VIDEO_WIDTH * s->spectogram_index * 3;
data += SPECTOGRAM_START * VIDEO_WIDTH * 3;
memcpy(data, s->spectogram[s->spectogram_index], total_length - back_length);
data += total_length - back_length;
if(back_length)
memcpy(data, s->spectogram[0], back_length);
}
else
{
for (y = 0; y < SPECTOGRAM_HEIGHT; y++)
memcpy(data + (SPECTOGRAM_START + y) * linesize, s->spectogram[(s->spectogram_index + y) % SPECTOGRAM_HEIGHT], VIDEO_WIDTH * 3);
}
s->outpicref->pts = s->frame_count;
ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref));
s->req_fullfilled = 1;
s->frame_count++;
}
s->spectogram_count = (s->spectogram_count + 1) % s->count;
s->spectogram_index = (s->spectogram_index + SPECTOGRAM_HEIGHT - 1) % SPECTOGRAM_HEIGHT;
return ret;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
{
AVFilterContext *ctx = inlink->dst;
ShowCQTContext *s = ctx->priv;
int step = inlink->sample_rate / (s->fps * s->count);
int fft_len = 1 << s->fft_bits;
int remaining;
float *audio_data;
if (!insamples)
{
while (s->remaining_fill < (fft_len >> 1))
{
int ret, x;
memset(&s->fft_data[fft_len - s->remaining_fill], 0, sizeof(*s->fft_data) * s->remaining_fill);
ret = plot_cqt(inlink);
if (ret < 0)
return ret;
for (x = 0; x < (fft_len-step); x++)
s->fft_data[x] = s->fft_data[x+step];
s->remaining_fill += step;
}
return AVERROR(EOF);
}
remaining = insamples->nb_samples;
audio_data = (float*) insamples->data[0];
while (remaining)
{
if (remaining >= s->remaining_fill)
{
int i = insamples->nb_samples - remaining;
int j = fft_len - s->remaining_fill;
int m, ret;
for (m = 0; m < s->remaining_fill; m++)
{
s->fft_data[j+m].re = audio_data[2*(i+m)];
s->fft_data[j+m].im = audio_data[2*(i+m)+1];
}
ret = plot_cqt(inlink);
if (ret < 0)
{
av_frame_free(&insamples);
return ret;
}
remaining -= s->remaining_fill;
for (m = 0; m < fft_len-step; m++)
s->fft_data[m] = s->fft_data[m+step];
s->remaining_fill = step;
}
else
{
int i = insamples->nb_samples - remaining;
int j = fft_len - s->remaining_fill;
int m;
for (m = 0; m < remaining; m++)
{
s->fft_data[m+j].re = audio_data[2*(i+m)];
s->fft_data[m+j].im = audio_data[2*(i+m)+1];
}
s->remaining_fill -= remaining;
remaining = 0;
}
}
av_frame_free(&insamples);
return 0;
}
static int request_frame(AVFilterLink *outlink)
{
ShowCQTContext *s = outlink->src->priv;
AVFilterLink *inlink = outlink->src->inputs[0];
int ret;
s->req_fullfilled = 0;
do {
ret = ff_request_frame(inlink);
} while (!s->req_fullfilled && ret >= 0);
if (ret == AVERROR_EOF && s->outpicref)
filter_frame(inlink, NULL);
return ret;
}
static const AVFilterPad showcqt_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad showcqt_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
.request_frame = request_frame,
},
{ NULL }
};
AVFilter ff_avf_showcqt = {
.name = "showcqt",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a CQT (Constant Q Transform) spectrum video output."),
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(ShowCQTContext),
.inputs = showcqt_inputs,
.outputs = showcqt_outputs,
.priv_class = &showcqt_class,
};