ffmpeg/libavfilter/af_loudnorm.c

943 lines
32 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2016 Kyle Swanson <k@ylo.ph>.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* http://k.ylo.ph/2016/04/04/loudnorm.html */
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "internal.h"
#include "audio.h"
#include "ebur128.h"
enum FrameType {
FIRST_FRAME,
INNER_FRAME,
FINAL_FRAME,
LINEAR_MODE,
FRAME_NB
};
enum LimiterState {
OUT,
ATTACK,
SUSTAIN,
RELEASE,
STATE_NB
};
enum PrintFormat {
NONE,
JSON,
SUMMARY,
PF_NB
};
typedef struct LoudNormContext {
const AVClass *class;
double target_i;
double target_lra;
double target_tp;
double measured_i;
double measured_lra;
double measured_tp;
double measured_thresh;
double offset;
int linear;
int dual_mono;
enum PrintFormat print_format;
double *buf;
int buf_size;
int buf_index;
int prev_buf_index;
double delta[30];
double weights[21];
double prev_delta;
int index;
double gain_reduction[2];
double *limiter_buf;
double *prev_smp;
int limiter_buf_index;
int limiter_buf_size;
enum LimiterState limiter_state;
int peak_index;
int env_index;
int env_cnt;
int attack_length;
int release_length;
int64_t pts[30];
enum FrameType frame_type;
int above_threshold;
int prev_nb_samples;
int channels;
FFEBUR128State *r128_in;
FFEBUR128State *r128_out;
} LoudNormContext;
#define OFFSET(x) offsetof(LoudNormContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption loudnorm_options[] = {
{ "I", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS },
{ "i", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS },
{ "LRA", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 50., FLAGS },
{ "lra", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 50., FLAGS },
{ "TP", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS },
{ "tp", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS },
{ "measured_I", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS },
{ "measured_i", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS },
{ "measured_LRA", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS },
{ "measured_lra", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS },
{ "measured_TP", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS },
{ "measured_tp", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS },
{ "measured_thresh", "measured threshold of input file", OFFSET(measured_thresh), AV_OPT_TYPE_DOUBLE, {.dbl = -70.}, -99., 0., FLAGS },
{ "offset", "set offset gain", OFFSET(offset), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 99., FLAGS },
{ "linear", "normalize linearly if possible", OFFSET(linear), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "dual_mono", "treat mono input as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "print_format", "set print format for stats", OFFSET(print_format), AV_OPT_TYPE_INT, {.i64 = NONE}, NONE, PF_NB -1, FLAGS, .unit = "print_format" },
{ "none", 0, 0, AV_OPT_TYPE_CONST, {.i64 = NONE}, 0, 0, FLAGS, .unit = "print_format" },
{ "json", 0, 0, AV_OPT_TYPE_CONST, {.i64 = JSON}, 0, 0, FLAGS, .unit = "print_format" },
{ "summary", 0, 0, AV_OPT_TYPE_CONST, {.i64 = SUMMARY}, 0, 0, FLAGS, .unit = "print_format" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(loudnorm);
static inline int frame_size(int sample_rate, int frame_len_msec)
{
const int frame_size = round((double)sample_rate * (frame_len_msec / 1000.0));
return frame_size + (frame_size % 2);
}
static void init_gaussian_filter(LoudNormContext *s)
{
double total_weight = 0.0;
const double sigma = 3.5;
double adjust;
int i;
const int offset = 21 / 2;
const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI));
const double c2 = 2.0 * pow(sigma, 2.0);
for (i = 0; i < 21; i++) {
const int x = i - offset;
s->weights[i] = c1 * exp(-(pow(x, 2.0) / c2));
total_weight += s->weights[i];
}
adjust = 1.0 / total_weight;
for (i = 0; i < 21; i++)
s->weights[i] *= adjust;
}
static double gaussian_filter(LoudNormContext *s, int index)
{
double result = 0.;
int i;
index = index - 10 > 0 ? index - 10 : index + 20;
for (i = 0; i < 21; i++)
result += s->delta[((index + i) < 30) ? (index + i) : (index + i - 30)] * s->weights[i];
return result;
}
static void detect_peak(LoudNormContext *s, int offset, int nb_samples, int channels, int *peak_delta, double *peak_value)
{
int n, c, i, index;
double ceiling;
double *buf;
*peak_delta = -1;
buf = s->limiter_buf;
ceiling = s->target_tp;
index = s->limiter_buf_index + (offset * channels) + (1920 * channels);
if (index >= s->limiter_buf_size)
index -= s->limiter_buf_size;
if (s->frame_type == FIRST_FRAME) {
for (c = 0; c < channels; c++)
s->prev_smp[c] = fabs(buf[index + c - channels]);
}
for (n = 0; n < nb_samples; n++) {
for (c = 0; c < channels; c++) {
double this, next, max_peak;
this = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]);
next = fabs(buf[(index + c + channels) < s->limiter_buf_size ? (index + c + channels) : (index + c + channels - s->limiter_buf_size)]);
if ((s->prev_smp[c] <= this) && (next <= this) && (this > ceiling) && (n > 0)) {
int detected;
detected = 1;
for (i = 2; i < 12; i++) {
next = fabs(buf[(index + c + (i * channels)) < s->limiter_buf_size ? (index + c + (i * channels)) : (index + c + (i * channels) - s->limiter_buf_size)]);
if (next > this) {
detected = 0;
break;
}
}
if (!detected)
continue;
for (c = 0; c < channels; c++) {
if (c == 0 || fabs(buf[index + c]) > max_peak)
max_peak = fabs(buf[index + c]);
s->prev_smp[c] = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]);
}
*peak_delta = n;
s->peak_index = index;
*peak_value = max_peak;
return;
}
s->prev_smp[c] = this;
}
index += channels;
if (index >= s->limiter_buf_size)
index -= s->limiter_buf_size;
}
}
static void true_peak_limiter(LoudNormContext *s, double *out, int nb_samples, int channels)
{
int n, c, index, peak_delta, smp_cnt;
double ceiling, peak_value;
double *buf;
buf = s->limiter_buf;
ceiling = s->target_tp;
index = s->limiter_buf_index;
smp_cnt = 0;
if (s->frame_type == FIRST_FRAME) {
double max;
max = 0.;
for (n = 0; n < 1920; n++) {
for (c = 0; c < channels; c++) {
max = fabs(buf[c]) > max ? fabs(buf[c]) : max;
}
buf += channels;
}
if (max > ceiling) {
s->gain_reduction[1] = ceiling / max;
s->limiter_state = SUSTAIN;
buf = s->limiter_buf;
for (n = 0; n < 1920; n++) {
for (c = 0; c < channels; c++) {
double env;
env = s->gain_reduction[1];
buf[c] *= env;
}
buf += channels;
}
}
buf = s->limiter_buf;
}
do {
switch(s->limiter_state) {
case OUT:
detect_peak(s, smp_cnt, nb_samples - smp_cnt, channels, &peak_delta, &peak_value);
if (peak_delta != -1) {
s->env_cnt = 0;
smp_cnt += (peak_delta - s->attack_length);
s->gain_reduction[0] = 1.;
s->gain_reduction[1] = ceiling / peak_value;
s->limiter_state = ATTACK;
s->env_index = s->peak_index - (s->attack_length * channels);
if (s->env_index < 0)
s->env_index += s->limiter_buf_size;
s->env_index += (s->env_cnt * channels);
if (s->env_index > s->limiter_buf_size)
s->env_index -= s->limiter_buf_size;
} else {
smp_cnt = nb_samples;
}
break;
case ATTACK:
for (; s->env_cnt < s->attack_length; s->env_cnt++) {
for (c = 0; c < channels; c++) {
double env;
env = s->gain_reduction[0] - ((double) s->env_cnt / (s->attack_length - 1) * (s->gain_reduction[0] - s->gain_reduction[1]));
buf[s->env_index + c] *= env;
}
s->env_index += channels;
if (s->env_index >= s->limiter_buf_size)
s->env_index -= s->limiter_buf_size;
smp_cnt++;
if (smp_cnt >= nb_samples) {
s->env_cnt++;
break;
}
}
if (smp_cnt < nb_samples) {
s->env_cnt = 0;
s->attack_length = 1920;
s->limiter_state = SUSTAIN;
}
break;
case SUSTAIN:
detect_peak(s, smp_cnt, nb_samples, channels, &peak_delta, &peak_value);
if (peak_delta == -1) {
s->limiter_state = RELEASE;
s->gain_reduction[0] = s->gain_reduction[1];
s->gain_reduction[1] = 1.;
s->env_cnt = 0;
break;
} else {
double gain_reduction;
gain_reduction = ceiling / peak_value;
if (gain_reduction < s->gain_reduction[1]) {
s->limiter_state = ATTACK;
s->attack_length = peak_delta;
if (s->attack_length <= 1)
s->attack_length = 2;
s->gain_reduction[0] = s->gain_reduction[1];
s->gain_reduction[1] = gain_reduction;
s->env_cnt = 0;
break;
}
for (s->env_cnt = 0; s->env_cnt < peak_delta; s->env_cnt++) {
for (c = 0; c < channels; c++) {
double env;
env = s->gain_reduction[1];
buf[s->env_index + c] *= env;
}
s->env_index += channels;
if (s->env_index >= s->limiter_buf_size)
s->env_index -= s->limiter_buf_size;
smp_cnt++;
if (smp_cnt >= nb_samples) {
s->env_cnt++;
break;
}
}
}
break;
case RELEASE:
for (; s->env_cnt < s->release_length; s->env_cnt++) {
for (c = 0; c < channels; c++) {
double env;
env = s->gain_reduction[0] + (((double) s->env_cnt / (s->release_length - 1)) * (s->gain_reduction[1] - s->gain_reduction[0]));
buf[s->env_index + c] *= env;
}
s->env_index += channels;
if (s->env_index >= s->limiter_buf_size)
s->env_index -= s->limiter_buf_size;
smp_cnt++;
if (smp_cnt >= nb_samples) {
s->env_cnt++;
break;
}
}
if (smp_cnt < nb_samples) {
s->env_cnt = 0;
s->limiter_state = OUT;
}
break;
}
} while (smp_cnt < nb_samples);
for (n = 0; n < nb_samples; n++) {
for (c = 0; c < channels; c++) {
out[c] = buf[index + c];
if (fabs(out[c]) > ceiling) {
out[c] = ceiling * (out[c] < 0 ? -1 : 1);
}
}
out += channels;
index += channels;
if (index >= s->limiter_buf_size)
index -= s->limiter_buf_size;
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LoudNormContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
const double *src;
double *dst;
double *buf;
double *limiter_buf;
int i, n, c, subframe_length, src_index;
double gain, gain_next, env_global, env_shortterm,
global, shortterm, lra, relative_threshold;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
out->pts = s->pts[0];
memmove(s->pts, &s->pts[1], (FF_ARRAY_ELEMS(s->pts) - 1) * sizeof(s->pts[0]));
src = (const double *)in->data[0];
dst = (double *)out->data[0];
buf = s->buf;
limiter_buf = s->limiter_buf;
ff_ebur128_add_frames_double(s->r128_in, src, in->nb_samples);
if (s->frame_type == FIRST_FRAME && in->nb_samples < frame_size(inlink->sample_rate, 3000)) {
double offset, offset_tp, true_peak;
ff_ebur128_loudness_global(s->r128_in, &global);
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
double tmp;
ff_ebur128_sample_peak(s->r128_in, c, &tmp);
if (c == 0 || tmp > true_peak)
true_peak = tmp;
}
offset = pow(10., (s->target_i - global) / 20.);
offset_tp = true_peak * offset;
s->offset = offset_tp < s->target_tp ? offset : s->target_tp / true_peak;
s->frame_type = LINEAR_MODE;
}
switch (s->frame_type) {
case FIRST_FRAME:
for (n = 0; n < in->nb_samples; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
buf[s->buf_index + c] = src[c];
}
src += inlink->ch_layout.nb_channels;
s->buf_index += inlink->ch_layout.nb_channels;
}
ff_ebur128_loudness_shortterm(s->r128_in, &shortterm);
if (shortterm < s->measured_thresh) {
s->above_threshold = 0;
env_shortterm = shortterm <= -70. ? 0. : s->target_i - s->measured_i;
} else {
s->above_threshold = 1;
env_shortterm = shortterm <= -70. ? 0. : s->target_i - shortterm;
}
for (n = 0; n < 30; n++)
s->delta[n] = pow(10., env_shortterm / 20.);
s->prev_delta = s->delta[s->index];
s->buf_index =
s->limiter_buf_index = 0;
for (n = 0; n < (s->limiter_buf_size / inlink->ch_layout.nb_channels); n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * s->delta[s->index] * s->offset;
}
s->limiter_buf_index += inlink->ch_layout.nb_channels;
if (s->limiter_buf_index >= s->limiter_buf_size)
s->limiter_buf_index -= s->limiter_buf_size;
s->buf_index += inlink->ch_layout.nb_channels;
}
subframe_length = frame_size(inlink->sample_rate, 100);
true_peak_limiter(s, dst, subframe_length, inlink->ch_layout.nb_channels);
ff_ebur128_add_frames_double(s->r128_out, dst, subframe_length);
out->nb_samples = subframe_length;
s->frame_type = INNER_FRAME;
break;
case INNER_FRAME:
gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30);
gain_next = gaussian_filter(s, s->index + 11 < 30 ? s->index + 11 : s->index + 11 - 30);
for (n = 0; n < in->nb_samples; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
buf[s->prev_buf_index + c] = src[c];
limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * (gain + (((double) n / in->nb_samples) * (gain_next - gain))) * s->offset;
}
src += inlink->ch_layout.nb_channels;
s->limiter_buf_index += inlink->ch_layout.nb_channels;
if (s->limiter_buf_index >= s->limiter_buf_size)
s->limiter_buf_index -= s->limiter_buf_size;
s->prev_buf_index += inlink->ch_layout.nb_channels;
if (s->prev_buf_index >= s->buf_size)
s->prev_buf_index -= s->buf_size;
s->buf_index += inlink->ch_layout.nb_channels;
if (s->buf_index >= s->buf_size)
s->buf_index -= s->buf_size;
}
subframe_length = (frame_size(inlink->sample_rate, 100) - in->nb_samples) * inlink->ch_layout.nb_channels;
s->limiter_buf_index = s->limiter_buf_index + subframe_length < s->limiter_buf_size ? s->limiter_buf_index + subframe_length : s->limiter_buf_index + subframe_length - s->limiter_buf_size;
true_peak_limiter(s, dst, in->nb_samples, inlink->ch_layout.nb_channels);
ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
ff_ebur128_loudness_range(s->r128_in, &lra);
ff_ebur128_loudness_global(s->r128_in, &global);
ff_ebur128_loudness_shortterm(s->r128_in, &shortterm);
ff_ebur128_relative_threshold(s->r128_in, &relative_threshold);
if (s->above_threshold == 0) {
double shortterm_out;
if (shortterm > s->measured_thresh)
s->prev_delta *= 1.0058;
ff_ebur128_loudness_shortterm(s->r128_out, &shortterm_out);
if (shortterm_out >= s->target_i)
s->above_threshold = 1;
}
if (shortterm < relative_threshold || shortterm <= -70. || s->above_threshold == 0) {
s->delta[s->index] = s->prev_delta;
} else {
env_global = fabs(shortterm - global) < (s->target_lra / 2.) ? shortterm - global : (s->target_lra / 2.) * ((shortterm - global) < 0 ? -1 : 1);
env_shortterm = s->target_i - shortterm;
s->delta[s->index] = pow(10., (env_global + env_shortterm) / 20.);
}
s->prev_delta = s->delta[s->index];
s->index++;
if (s->index >= 30)
s->index -= 30;
s->prev_nb_samples = in->nb_samples;
break;
case FINAL_FRAME:
gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30);
s->limiter_buf_index = 0;
src_index = 0;
for (n = 0; n < s->limiter_buf_size / inlink->ch_layout.nb_channels; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
s->limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset;
}
src_index += inlink->ch_layout.nb_channels;
s->limiter_buf_index += inlink->ch_layout.nb_channels;
if (s->limiter_buf_index >= s->limiter_buf_size)
s->limiter_buf_index -= s->limiter_buf_size;
}
subframe_length = frame_size(inlink->sample_rate, 100);
for (i = 0; i < in->nb_samples / subframe_length; i++) {
true_peak_limiter(s, dst, subframe_length, inlink->ch_layout.nb_channels);
for (n = 0; n < subframe_length; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
if (src_index < (in->nb_samples * inlink->ch_layout.nb_channels)) {
limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset;
} else {
limiter_buf[s->limiter_buf_index + c] = 0.;
}
}
if (src_index < (in->nb_samples * inlink->ch_layout.nb_channels))
src_index += inlink->ch_layout.nb_channels;
s->limiter_buf_index += inlink->ch_layout.nb_channels;
if (s->limiter_buf_index >= s->limiter_buf_size)
s->limiter_buf_index -= s->limiter_buf_size;
}
dst += (subframe_length * inlink->ch_layout.nb_channels);
}
dst = (double *)out->data[0];
ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
break;
case LINEAR_MODE:
for (n = 0; n < in->nb_samples; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
dst[c] = src[c] * s->offset;
}
src += inlink->ch_layout.nb_channels;
dst += inlink->ch_layout.nb_channels;
}
dst = (double *)out->data[0];
ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
break;
}
if (in != out)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int flush_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
LoudNormContext *s = ctx->priv;
int ret = 0;
if (s->frame_type == INNER_FRAME) {
double *src;
double *buf;
int nb_samples, n, c, offset;
AVFrame *frame;
nb_samples = (s->buf_size / inlink->ch_layout.nb_channels) - s->prev_nb_samples;
nb_samples -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples);
frame = ff_get_audio_buffer(outlink, nb_samples);
if (!frame)
return AVERROR(ENOMEM);
frame->nb_samples = nb_samples;
buf = s->buf;
src = (double *)frame->data[0];
offset = ((s->limiter_buf_size / inlink->ch_layout.nb_channels) - s->prev_nb_samples) * inlink->ch_layout.nb_channels;
offset -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples) * inlink->ch_layout.nb_channels;
s->buf_index = s->buf_index - offset < 0 ? s->buf_index - offset + s->buf_size : s->buf_index - offset;
for (n = 0; n < nb_samples; n++) {
for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
src[c] = buf[s->buf_index + c];
}
src += inlink->ch_layout.nb_channels;
s->buf_index += inlink->ch_layout.nb_channels;
if (s->buf_index >= s->buf_size)
s->buf_index -= s->buf_size;
}
s->frame_type = FINAL_FRAME;
ret = filter_frame(inlink, frame);
}
return ret;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
LoudNormContext *s = ctx->priv;
AVFrame *in = NULL;
int ret = 0, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->frame_type != LINEAR_MODE) {
int nb_samples;
if (s->frame_type == FIRST_FRAME) {
nb_samples = frame_size(inlink->sample_rate, 3000);
} else {
nb_samples = frame_size(inlink->sample_rate, 100);
}
ret = ff_inlink_consume_samples(inlink, nb_samples, nb_samples, &in);
} else {
ret = ff_inlink_consume_frame(inlink, &in);
}
if (ret < 0)
return ret;
if (ret > 0) {
if (s->frame_type == FIRST_FRAME) {
const int nb_samples = frame_size(inlink->sample_rate, 100);
for (int i = 0; i < FF_ARRAY_ELEMS(s->pts); i++)
s->pts[i] = in->pts + i * nb_samples;
} else if (s->frame_type == LINEAR_MODE) {
s->pts[0] = in->pts;
} else {
s->pts[FF_ARRAY_ELEMS(s->pts) - 1] = in->pts;
}
ret = filter_frame(inlink, in);
}
if (ret < 0)
return ret;
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
ff_outlink_set_status(outlink, status, pts);
return flush_frame(outlink);
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int query_formats(AVFilterContext *ctx)
{
LoudNormContext *s = ctx->priv;
static const int input_srate[] = {192000, -1};
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_DBL,
AV_SAMPLE_FMT_NONE
};
int ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
ret = ff_set_common_formats_from_list(ctx, sample_fmts);
if (ret < 0)
return ret;
if (s->frame_type == LINEAR_MODE) {
return ff_set_common_all_samplerates(ctx);
} else {
return ff_set_common_samplerates_from_list(ctx, input_srate);
}
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
LoudNormContext *s = ctx->priv;
s->r128_in = ff_ebur128_init(inlink->ch_layout.nb_channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK);
if (!s->r128_in)
return AVERROR(ENOMEM);
s->r128_out = ff_ebur128_init(inlink->ch_layout.nb_channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK);
if (!s->r128_out)
return AVERROR(ENOMEM);
if (inlink->ch_layout.nb_channels == 1 && s->dual_mono) {
ff_ebur128_set_channel(s->r128_in, 0, FF_EBUR128_DUAL_MONO);
ff_ebur128_set_channel(s->r128_out, 0, FF_EBUR128_DUAL_MONO);
}
s->buf_size = frame_size(inlink->sample_rate, 3000) * inlink->ch_layout.nb_channels;
s->buf = av_malloc_array(s->buf_size, sizeof(*s->buf));
if (!s->buf)
return AVERROR(ENOMEM);
s->limiter_buf_size = frame_size(inlink->sample_rate, 210) * inlink->ch_layout.nb_channels;
s->limiter_buf = av_malloc_array(s->buf_size, sizeof(*s->limiter_buf));
if (!s->limiter_buf)
return AVERROR(ENOMEM);
s->prev_smp = av_malloc_array(inlink->ch_layout.nb_channels, sizeof(*s->prev_smp));
if (!s->prev_smp)
return AVERROR(ENOMEM);
init_gaussian_filter(s);
s->buf_index =
s->prev_buf_index =
s->limiter_buf_index = 0;
s->channels = inlink->ch_layout.nb_channels;
s->index = 1;
s->limiter_state = OUT;
s->offset = pow(10., s->offset / 20.);
s->target_tp = pow(10., s->target_tp / 20.);
s->attack_length = frame_size(inlink->sample_rate, 10);
s->release_length = frame_size(inlink->sample_rate, 100);
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
LoudNormContext *s = ctx->priv;
s->frame_type = FIRST_FRAME;
if (s->linear) {
double offset, offset_tp;
offset = s->target_i - s->measured_i;
offset_tp = s->measured_tp + offset;
if (s->measured_tp != 99 && s->measured_thresh != -70 && s->measured_lra != 0 && s->measured_i != 0) {
if ((offset_tp <= s->target_tp) && (s->measured_lra <= s->target_lra)) {
s->frame_type = LINEAR_MODE;
s->offset = offset;
}
}
}
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
LoudNormContext *s = ctx->priv;
double i_in, i_out, lra_in, lra_out, thresh_in, thresh_out, tp_in, tp_out;
int c;
if (!s->r128_in || !s->r128_out)
goto end;
ff_ebur128_loudness_range(s->r128_in, &lra_in);
ff_ebur128_loudness_global(s->r128_in, &i_in);
ff_ebur128_relative_threshold(s->r128_in, &thresh_in);
for (c = 0; c < s->channels; c++) {
double tmp;
ff_ebur128_sample_peak(s->r128_in, c, &tmp);
if ((c == 0) || (tmp > tp_in))
tp_in = tmp;
}
ff_ebur128_loudness_range(s->r128_out, &lra_out);
ff_ebur128_loudness_global(s->r128_out, &i_out);
ff_ebur128_relative_threshold(s->r128_out, &thresh_out);
for (c = 0; c < s->channels; c++) {
double tmp;
ff_ebur128_sample_peak(s->r128_out, c, &tmp);
if ((c == 0) || (tmp > tp_out))
tp_out = tmp;
}
switch(s->print_format) {
case NONE:
break;
case JSON:
av_log(ctx, AV_LOG_INFO,
"\n{\n"
"\t\"input_i\" : \"%.2f\",\n"
"\t\"input_tp\" : \"%.2f\",\n"
"\t\"input_lra\" : \"%.2f\",\n"
"\t\"input_thresh\" : \"%.2f\",\n"
"\t\"output_i\" : \"%.2f\",\n"
"\t\"output_tp\" : \"%+.2f\",\n"
"\t\"output_lra\" : \"%.2f\",\n"
"\t\"output_thresh\" : \"%.2f\",\n"
"\t\"normalization_type\" : \"%s\",\n"
"\t\"target_offset\" : \"%.2f\"\n"
"}\n",
i_in,
20. * log10(tp_in),
lra_in,
thresh_in,
i_out,
20. * log10(tp_out),
lra_out,
thresh_out,
s->frame_type == LINEAR_MODE ? "linear" : "dynamic",
s->target_i - i_out
);
break;
case SUMMARY:
av_log(ctx, AV_LOG_INFO,
"\n"
"Input Integrated: %+6.1f LUFS\n"
"Input True Peak: %+6.1f dBTP\n"
"Input LRA: %6.1f LU\n"
"Input Threshold: %+6.1f LUFS\n"
"\n"
"Output Integrated: %+6.1f LUFS\n"
"Output True Peak: %+6.1f dBTP\n"
"Output LRA: %6.1f LU\n"
"Output Threshold: %+6.1f LUFS\n"
"\n"
"Normalization Type: %s\n"
"Target Offset: %+6.1f LU\n",
i_in,
20. * log10(tp_in),
lra_in,
thresh_in,
i_out,
20. * log10(tp_out),
lra_out,
thresh_out,
s->frame_type == LINEAR_MODE ? "Linear" : "Dynamic",
s->target_i - i_out
);
break;
}
end:
if (s->r128_in)
ff_ebur128_destroy(&s->r128_in);
if (s->r128_out)
ff_ebur128_destroy(&s->r128_out);
av_freep(&s->limiter_buf);
av_freep(&s->prev_smp);
av_freep(&s->buf);
}
static const AVFilterPad avfilter_af_loudnorm_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
},
};
const AVFilter ff_af_loudnorm = {
.name = "loudnorm",
.description = NULL_IF_CONFIG_SMALL("EBU R128 loudness normalization"),
.priv_size = sizeof(LoudNormContext),
.priv_class = &loudnorm_class,
.init = init,
.activate = activate,
.uninit = uninit,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(avfilter_af_loudnorm_inputs),
FILTER_OUTPUTS(ff_audio_default_filterpad),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(query_formats),
};