ffmpeg/libavcodec/nvenc.c

2906 lines
98 KiB
C
Raw Permalink Normal View History

/*
* H.264/HEVC/AV1 hardware encoding using nvidia nvenc
2016-08-28 19:51:22 +02:00
* Copyright (c) 2016 Timo Rothenpieler <timo@rothenpieler.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "config_components.h"
#include "nvenc.h"
#include "hevc_sei.h"
#if CONFIG_AV1_NVENC_ENCODER
#include "av1.h"
#endif
#include "libavutil/hwcontext_cuda.h"
#include "libavutil/hwcontext.h"
#include "libavutil/cuda_check.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/pixdesc.h"
#include "libavutil/mathematics.h"
#include "atsc_a53.h"
#include "codec_desc.h"
#include "encode.h"
#include "internal.h"
#include "packet_internal.h"
#define CHECK_CU(x) FF_CUDA_CHECK_DL(avctx, dl_fn->cuda_dl, x)
#define NVENC_CAP 0x30
#ifndef NVENC_NO_DEPRECATED_RC
#define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR || \
rc == NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ || \
rc == NV_ENC_PARAMS_RC_CBR_HQ)
#else
#define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR)
#endif
const enum AVPixelFormat ff_nvenc_pix_fmts[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_P010,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_P016, // Truncated to 10bits
AV_PIX_FMT_YUV444P16, // Truncated to 10bits
AV_PIX_FMT_0RGB32,
AV_PIX_FMT_RGB32,
AV_PIX_FMT_0BGR32,
AV_PIX_FMT_BGR32,
AV_PIX_FMT_X2RGB10,
AV_PIX_FMT_X2BGR10,
AV_PIX_FMT_GBRP,
AV_PIX_FMT_GBRP16, // Truncated to 10bits
AV_PIX_FMT_CUDA,
2017-11-11 16:51:58 +01:00
#if CONFIG_D3D11VA
AV_PIX_FMT_D3D11,
#endif
AV_PIX_FMT_NONE
};
const AVCodecHWConfigInternal *const ff_nvenc_hw_configs[] = {
HW_CONFIG_ENCODER_FRAMES(CUDA, CUDA),
HW_CONFIG_ENCODER_DEVICE(NONE, CUDA),
#if CONFIG_D3D11VA
HW_CONFIG_ENCODER_FRAMES(D3D11, D3D11VA),
HW_CONFIG_ENCODER_DEVICE(NONE, D3D11VA),
#endif
NULL,
};
#define IS_10BIT(pix_fmt) (pix_fmt == AV_PIX_FMT_P010 || \
pix_fmt == AV_PIX_FMT_P016 || \
pix_fmt == AV_PIX_FMT_YUV444P16 || \
pix_fmt == AV_PIX_FMT_X2RGB10 || \
pix_fmt == AV_PIX_FMT_X2BGR10 || \
pix_fmt == AV_PIX_FMT_GBRP16)
#define IS_RGB(pix_fmt) (pix_fmt == AV_PIX_FMT_0RGB32 || \
pix_fmt == AV_PIX_FMT_RGB32 || \
pix_fmt == AV_PIX_FMT_0BGR32 || \
pix_fmt == AV_PIX_FMT_BGR32 || \
pix_fmt == AV_PIX_FMT_X2RGB10 || \
pix_fmt == AV_PIX_FMT_X2BGR10)
#define IS_YUV444(pix_fmt) (pix_fmt == AV_PIX_FMT_YUV444P || \
pix_fmt == AV_PIX_FMT_YUV444P16 || \
pix_fmt == AV_PIX_FMT_GBRP || \
pix_fmt == AV_PIX_FMT_GBRP16 || \
(ctx->rgb_mode == NVENC_RGB_MODE_444 && IS_RGB(pix_fmt)))
#define IS_GBRP(pix_fmt) (pix_fmt == AV_PIX_FMT_GBRP || \
pix_fmt == AV_PIX_FMT_GBRP16)
static const struct {
NVENCSTATUS nverr;
int averr;
const char *desc;
} nvenc_errors[] = {
{ NV_ENC_SUCCESS, 0, "success" },
{ NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" },
{ NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" },
{ NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" },
{ NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" },
{ NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" },
{ NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" },
{ NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" },
{ NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" },
{ NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" },
{ NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" },
{ NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" },
{ NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" },
{ NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" },
{ NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR_BUFFER_TOO_SMALL, "not enough buffer"},
{ NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" },
{ NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" },
{ NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" },
{ NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" },
{ NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" },
{ NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" },
{ NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" },
{ NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" },
{ NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" },
{ NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" },
{ NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" },
};
static int nvenc_map_error(NVENCSTATUS err, const char **desc)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) {
if (nvenc_errors[i].nverr == err) {
if (desc)
*desc = nvenc_errors[i].desc;
return nvenc_errors[i].averr;
}
}
if (desc)
*desc = "unknown error";
return AVERROR_UNKNOWN;
}
static int nvenc_print_error(AVCodecContext *avctx, NVENCSTATUS err,
const char *error_string)
{
const char *desc;
const char *details = "(no details)";
int ret = nvenc_map_error(err, &desc);
#ifdef NVENC_HAVE_GETLASTERRORSTRING
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
if (p_nvenc && ctx->nvencoder)
details = p_nvenc->nvEncGetLastErrorString(ctx->nvencoder);
#endif
av_log(avctx, AV_LOG_ERROR, "%s: %s (%d): %s\n", error_string, desc, err, details);
return ret;
}
typedef struct GUIDTuple {
const GUID guid;
int flags;
} GUIDTuple;
#define PRESET_ALIAS(alias, name, ...) \
[PRESET_ ## alias] = { NV_ENC_PRESET_ ## name ## _GUID, __VA_ARGS__ }
#define PRESET(name, ...) PRESET_ALIAS(name, name, __VA_ARGS__)
static void nvenc_map_preset(NvencContext *ctx)
{
GUIDTuple presets[] = {
#ifdef NVENC_HAVE_NEW_PRESETS
PRESET(P1),
PRESET(P2),
PRESET(P3),
PRESET(P4),
PRESET(P5),
PRESET(P6),
PRESET(P7),
PRESET_ALIAS(SLOW, P7, NVENC_TWO_PASSES),
PRESET_ALIAS(MEDIUM, P4, NVENC_ONE_PASS),
PRESET_ALIAS(FAST, P1, NVENC_ONE_PASS),
// Compat aliases
PRESET_ALIAS(DEFAULT, P4, NVENC_DEPRECATED_PRESET),
PRESET_ALIAS(HP, P1, NVENC_DEPRECATED_PRESET),
PRESET_ALIAS(HQ, P7, NVENC_DEPRECATED_PRESET),
PRESET_ALIAS(BD, P5, NVENC_DEPRECATED_PRESET),
PRESET_ALIAS(LOW_LATENCY_DEFAULT, P4, NVENC_DEPRECATED_PRESET | NVENC_LOWLATENCY),
PRESET_ALIAS(LOW_LATENCY_HP, P1, NVENC_DEPRECATED_PRESET | NVENC_LOWLATENCY),
PRESET_ALIAS(LOW_LATENCY_HQ, P7, NVENC_DEPRECATED_PRESET | NVENC_LOWLATENCY),
PRESET_ALIAS(LOSSLESS_DEFAULT, P4, NVENC_DEPRECATED_PRESET | NVENC_LOSSLESS),
PRESET_ALIAS(LOSSLESS_HP, P1, NVENC_DEPRECATED_PRESET | NVENC_LOSSLESS),
#else
PRESET(DEFAULT),
PRESET(HP),
PRESET(HQ),
PRESET(BD),
PRESET_ALIAS(SLOW, HQ, NVENC_TWO_PASSES),
PRESET_ALIAS(MEDIUM, HQ, NVENC_ONE_PASS),
PRESET_ALIAS(FAST, HP, NVENC_ONE_PASS),
PRESET(LOW_LATENCY_DEFAULT, NVENC_LOWLATENCY),
PRESET(LOW_LATENCY_HP, NVENC_LOWLATENCY),
PRESET(LOW_LATENCY_HQ, NVENC_LOWLATENCY),
PRESET(LOSSLESS_DEFAULT, NVENC_LOSSLESS),
PRESET(LOSSLESS_HP, NVENC_LOSSLESS),
#endif
};
GUIDTuple *t = &presets[ctx->preset];
ctx->init_encode_params.presetGUID = t->guid;
ctx->flags = t->flags;
#ifdef NVENC_HAVE_NEW_PRESETS
if (ctx->tuning_info == NV_ENC_TUNING_INFO_LOSSLESS)
ctx->flags |= NVENC_LOSSLESS;
#endif
}
#undef PRESET
#undef PRESET_ALIAS
static void nvenc_print_driver_requirement(AVCodecContext *avctx, int level)
{
#if NVENCAPI_CHECK_VERSION(12, 3)
const char *minver = "(unknown)";
#elif NVENCAPI_CHECK_VERSION(12, 2)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "551.76";
# else
const char *minver = "550.54.14";
# endif
#elif NVENCAPI_CHECK_VERSION(12, 1)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "531.61";
# else
const char *minver = "530.41.03";
# endif
#elif NVENCAPI_CHECK_VERSION(12, 0)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "522.25";
# else
const char *minver = "520.56.06";
# endif
#elif NVENCAPI_CHECK_VERSION(11, 1)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "471.41";
# else
const char *minver = "470.57.02";
# endif
#elif NVENCAPI_CHECK_VERSION(11, 0)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "456.71";
# else
const char *minver = "455.28";
# endif
#elif NVENCAPI_CHECK_VERSION(10, 0)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "450.51";
# else
const char *minver = "445.87";
# endif
#elif NVENCAPI_CHECK_VERSION(9, 1)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "436.15";
# else
const char *minver = "435.21";
# endif
#elif NVENCAPI_CHECK_VERSION(9, 0)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "418.81";
# else
const char *minver = "418.30";
# endif
#elif NVENCAPI_CHECK_VERSION(8, 2)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "397.93";
# else
const char *minver = "396.24";
#endif
#elif NVENCAPI_CHECK_VERSION(8, 1)
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "390.77";
# else
const char *minver = "390.25";
# endif
#else
# if defined(_WIN32) || defined(__CYGWIN__)
const char *minver = "378.66";
# else
const char *minver = "378.13";
# endif
#endif
av_log(avctx, level, "The minimum required Nvidia driver for nvenc is %s or newer\n", minver);
}
static av_cold int nvenc_load_libraries(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NVENCSTATUS err;
uint32_t nvenc_max_ver;
int ret;
ret = cuda_load_functions(&dl_fn->cuda_dl, avctx);
if (ret < 0)
return ret;
ret = nvenc_load_functions(&dl_fn->nvenc_dl, avctx);
if (ret < 0) {
nvenc_print_driver_requirement(avctx, AV_LOG_ERROR);
return ret;
}
err = dl_fn->nvenc_dl->NvEncodeAPIGetMaxSupportedVersion(&nvenc_max_ver);
if (err != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, err, "Failed to query nvenc max version");
av_log(avctx, AV_LOG_VERBOSE, "Loaded Nvenc version %d.%d\n", nvenc_max_ver >> 4, nvenc_max_ver & 0xf);
if ((NVENCAPI_MAJOR_VERSION << 4 | NVENCAPI_MINOR_VERSION) > nvenc_max_ver) {
av_log(avctx, AV_LOG_ERROR, "Driver does not support the required nvenc API version. "
"Required: %d.%d Found: %d.%d\n",
NVENCAPI_MAJOR_VERSION, NVENCAPI_MINOR_VERSION,
nvenc_max_ver >> 4, nvenc_max_ver & 0xf);
nvenc_print_driver_requirement(avctx, AV_LOG_ERROR);
return AVERROR(ENOSYS);
}
dl_fn->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER;
err = dl_fn->nvenc_dl->NvEncodeAPICreateInstance(&dl_fn->nvenc_funcs);
if (err != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, err, "Failed to create nvenc instance");
av_log(avctx, AV_LOG_VERBOSE, "Nvenc initialized successfully\n");
return 0;
}
static int nvenc_push_context(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
2017-11-11 16:51:58 +01:00
if (ctx->d3d11_device)
return 0;
return CHECK_CU(dl_fn->cuda_dl->cuCtxPushCurrent(ctx->cu_context));
}
static int nvenc_pop_context(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
CUcontext dummy;
2017-11-11 16:51:58 +01:00
if (ctx->d3d11_device)
return 0;
return CHECK_CU(dl_fn->cuda_dl->cuCtxPopCurrent(&dummy));
}
static av_cold int nvenc_open_session(AVCodecContext *avctx)
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 };
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
NVENCSTATUS ret;
params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER;
params.apiVersion = NVENCAPI_VERSION;
2017-11-11 16:51:58 +01:00
if (ctx->d3d11_device) {
params.device = ctx->d3d11_device;
params.deviceType = NV_ENC_DEVICE_TYPE_DIRECTX;
} else {
params.device = ctx->cu_context;
params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
}
ret = p_nvenc->nvEncOpenEncodeSessionEx(&params, &ctx->nvencoder);
if (ret != NV_ENC_SUCCESS) {
ctx->nvencoder = NULL;
return nvenc_print_error(avctx, ret, "OpenEncodeSessionEx failed");
}
return 0;
}
static int nvenc_check_codec_support(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
int i, ret, count = 0;
GUID *guids = NULL;
ret = p_nvenc->nvEncGetEncodeGUIDCount(ctx->nvencoder, &count);
if (ret != NV_ENC_SUCCESS || !count)
return AVERROR(ENOSYS);
guids = av_malloc(count * sizeof(GUID));
if (!guids)
return AVERROR(ENOMEM);
ret = p_nvenc->nvEncGetEncodeGUIDs(ctx->nvencoder, guids, count, &count);
if (ret != NV_ENC_SUCCESS) {
ret = AVERROR(ENOSYS);
goto fail;
}
ret = AVERROR(ENOSYS);
for (i = 0; i < count; i++) {
if (!memcmp(&guids[i], &ctx->init_encode_params.encodeGUID, sizeof(*guids))) {
ret = 0;
break;
}
}
fail:
av_free(guids);
return ret;
}
static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap)
{
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
NV_ENC_CAPS_PARAM params = { 0 };
int ret, val = 0;
params.version = NV_ENC_CAPS_PARAM_VER;
params.capsToQuery = cap;
ret = p_nvenc->nvEncGetEncodeCaps(ctx->nvencoder, ctx->init_encode_params.encodeGUID, &params, &val);
if (ret == NV_ENC_SUCCESS)
return val;
return 0;
}
static int nvenc_check_capabilities(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int tmp, ret;
ret = nvenc_check_codec_support(avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_WARNING, "Codec not supported\n");
return ret;
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE);
if (IS_YUV444(ctx->data_pix_fmt) && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "YUV444P not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOSSLESS_ENCODE);
if (ctx->flags & NVENC_LOSSLESS && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Lossless encoding not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX);
if (ret < avctx->width) {
av_log(avctx, AV_LOG_WARNING, "Width %d exceeds %d\n",
avctx->width, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX);
if (ret < avctx->height) {
av_log(avctx, AV_LOG_WARNING, "Height %d exceeds %d\n",
avctx->height, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES);
if (ret < avctx->max_b_frames) {
av_log(avctx, AV_LOG_WARNING, "Max B-frames %d exceed %d\n",
avctx->max_b_frames, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_FIELD_ENCODING);
if (ret < 1 && avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
av_log(avctx, AV_LOG_WARNING,
"Interlaced encoding is not supported. Supported level: %d\n",
ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_10BIT_ENCODE);
if ((IS_10BIT(ctx->data_pix_fmt) || ctx->highbitdepth) && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "10 bit encode not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOOKAHEAD);
if (ctx->rc_lookahead > 0 && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "RC lookahead not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_TEMPORAL_AQ);
if (ctx->temporal_aq > 0 && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Temporal AQ not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_WEIGHTED_PREDICTION);
if (ctx->weighted_pred > 0 && ret <= 0) {
av_log (avctx, AV_LOG_WARNING, "Weighted Prediction not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_CABAC);
if (ctx->coder == NV_ENC_H264_ENTROPY_CODING_MODE_CABAC && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "CABAC entropy coding not supported\n");
return AVERROR(ENOSYS);
}
#ifdef NVENC_HAVE_BFRAME_REF_MODE
tmp = (ctx->b_ref_mode >= 0) ? ctx->b_ref_mode : NV_ENC_BFRAME_REF_MODE_DISABLED;
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_BFRAME_REF_MODE);
if (tmp == NV_ENC_BFRAME_REF_MODE_EACH && ret != 1 && ret != 3) {
av_log(avctx, AV_LOG_WARNING, "Each B frame as reference is not supported\n");
return AVERROR(ENOSYS);
} else if (tmp != NV_ENC_BFRAME_REF_MODE_DISABLED && ret == 0) {
av_log(avctx, AV_LOG_WARNING, "B frames as references are not supported\n");
return AVERROR(ENOSYS);
}
#else
tmp = (ctx->b_ref_mode >= 0) ? ctx->b_ref_mode : 0;
if (tmp > 0) {
av_log(avctx, AV_LOG_WARNING, "B frames as references need SDK 8.1 at build time\n");
return AVERROR(ENOSYS);
}
#endif
#ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_MULTIPLE_REF_FRAMES);
if(avctx->refs != NV_ENC_NUM_REF_FRAMES_AUTOSELECT && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Multiple reference frames are not supported by the device\n");
return AVERROR(ENOSYS);
}
#else
if(avctx->refs != 0) {
av_log(avctx, AV_LOG_WARNING, "Multiple reference frames need SDK 9.1 at build time\n");
return AVERROR(ENOSYS);
}
#endif
#ifdef NVENC_HAVE_SINGLE_SLICE_INTRA_REFRESH
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SINGLE_SLICE_INTRA_REFRESH);
if(ctx->single_slice_intra_refresh && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Single slice intra refresh not supported by the device\n");
return AVERROR(ENOSYS);
}
#else
if(ctx->single_slice_intra_refresh) {
av_log(avctx, AV_LOG_WARNING, "Single slice intra refresh needs SDK 11.1 at build time\n");
return AVERROR(ENOSYS);
}
#endif
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_INTRA_REFRESH);
if((ctx->intra_refresh || ctx->single_slice_intra_refresh) && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Intra refresh not supported by the device\n");
return AVERROR(ENOSYS);
}
#ifndef NVENC_HAVE_HEVC_CONSTRAINED_ENCODING
if (ctx->constrained_encoding && avctx->codec->id == AV_CODEC_ID_HEVC) {
av_log(avctx, AV_LOG_WARNING, "HEVC constrained encoding needs SDK 10.0 at build time\n");
return AVERROR(ENOSYS);
}
#endif
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_CONSTRAINED_ENCODING);
if(ctx->constrained_encoding && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Constrained encoding not supported by the device\n");
return AVERROR(ENOSYS);
}
#ifdef NVENC_HAVE_TEMPORAL_FILTER
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_TEMPORAL_FILTER);
if(ctx->tf_level > 0 && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Temporal filtering not supported by the device\n");
return AVERROR(ENOSYS);
}
#endif
#ifdef NVENC_HAVE_LOOKAHEAD_LEVEL
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOOKAHEAD_LEVEL);
if(ctx->rc_lookahead > 0 && ctx->lookahead_level > 0 &&
ctx->lookahead_level != NV_ENC_LOOKAHEAD_LEVEL_AUTOSELECT &&
ctx->lookahead_level > ret)
{
av_log(avctx, AV_LOG_WARNING, "Lookahead level not supported. Maximum level: %d\n", ret);
return AVERROR(ENOSYS);
}
#endif
#ifdef NVENC_HAVE_UNIDIR_B
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_UNIDIRECTIONAL_B);
if(ctx->unidir_b && ret <= 0) {
av_log(avctx, AV_LOG_WARNING, "Unidirectional B-Frames not supported by the device\n");
return AVERROR(ENOSYS);
}
#endif
ctx->support_dyn_bitrate = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_DYN_BITRATE_CHANGE);
return 0;
}
static av_cold int nvenc_check_device(AVCodecContext *avctx, int idx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
char name[128] = { 0};
int major, minor, ret;
CUdevice cu_device;
int loglevel = AV_LOG_VERBOSE;
if (ctx->device == LIST_DEVICES)
loglevel = AV_LOG_INFO;
ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceGet(&cu_device, idx));
if (ret < 0)
return ret;
ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceGetName(name, sizeof(name), cu_device));
if (ret < 0)
return ret;
ret = CHECK_CU(dl_fn->cuda_dl->cuDeviceComputeCapability(&major, &minor, cu_device));
if (ret < 0)
return ret;
av_log(avctx, loglevel, "[ GPU #%d - < %s > has Compute SM %d.%d ]\n", idx, name, major, minor);
if (((major << 4) | minor) < NVENC_CAP) {
av_log(avctx, loglevel, "does not support NVENC\n");
goto fail;
}
if (ctx->device != idx && ctx->device != ANY_DEVICE)
return -1;
ret = CHECK_CU(dl_fn->cuda_dl->cuCtxCreate(&ctx->cu_context_internal, 0, cu_device));
if (ret < 0)
goto fail;
ctx->cu_context = ctx->cu_context_internal;
ctx->cu_stream = NULL;
if ((ret = nvenc_pop_context(avctx)) < 0)
goto fail2;
if ((ret = nvenc_open_session(avctx)) < 0)
goto fail2;
if ((ret = nvenc_check_capabilities(avctx)) < 0)
goto fail3;
av_log(avctx, loglevel, "supports NVENC\n");
dl_fn->nvenc_device_count++;
if (ctx->device == idx || ctx->device == ANY_DEVICE)
return 0;
fail3:
if ((ret = nvenc_push_context(avctx)) < 0)
return ret;
p_nvenc->nvEncDestroyEncoder(ctx->nvencoder);
ctx->nvencoder = NULL;
if ((ret = nvenc_pop_context(avctx)) < 0)
return ret;
fail2:
CHECK_CU(dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal));
ctx->cu_context_internal = NULL;
fail:
return AVERROR(ENOSYS);
}
static av_cold int nvenc_setup_device(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_H264_GUID;
break;
case AV_CODEC_ID_HEVC:
ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_HEVC_GUID;
break;
#if CONFIG_AV1_NVENC_ENCODER
case AV_CODEC_ID_AV1:
ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_AV1_GUID;
break;
#endif
default:
return AVERROR_BUG;
}
nvenc_map_preset(ctx);
if (ctx->flags & NVENC_DEPRECATED_PRESET)
av_log(avctx, AV_LOG_WARNING, "The selected preset is deprecated. Use p1 to p7 + -tune or fast/medium/slow.\n");
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11 || avctx->hw_frames_ctx || avctx->hw_device_ctx) {
AVHWFramesContext *frames_ctx;
AVHWDeviceContext *hwdev_ctx;
2017-11-11 16:51:58 +01:00
AVCUDADeviceContext *cuda_device_hwctx = NULL;
#if CONFIG_D3D11VA
AVD3D11VADeviceContext *d3d11_device_hwctx = NULL;
#endif
int ret;
if (avctx->hw_frames_ctx) {
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
2017-11-11 16:51:58 +01:00
if (frames_ctx->format == AV_PIX_FMT_CUDA)
cuda_device_hwctx = frames_ctx->device_ctx->hwctx;
#if CONFIG_D3D11VA
else if (frames_ctx->format == AV_PIX_FMT_D3D11)
d3d11_device_hwctx = frames_ctx->device_ctx->hwctx;
#endif
else
return AVERROR(EINVAL);
} else if (avctx->hw_device_ctx) {
hwdev_ctx = (AVHWDeviceContext*)avctx->hw_device_ctx->data;
2017-11-11 16:51:58 +01:00
if (hwdev_ctx->type == AV_HWDEVICE_TYPE_CUDA)
cuda_device_hwctx = hwdev_ctx->hwctx;
#if CONFIG_D3D11VA
else if (hwdev_ctx->type == AV_HWDEVICE_TYPE_D3D11VA)
d3d11_device_hwctx = hwdev_ctx->hwctx;
#endif
else
return AVERROR(EINVAL);
} else {
return AVERROR(EINVAL);
}
2017-11-11 16:51:58 +01:00
if (cuda_device_hwctx) {
ctx->cu_context = cuda_device_hwctx->cuda_ctx;
ctx->cu_stream = cuda_device_hwctx->stream;
2017-11-11 16:51:58 +01:00
}
#if CONFIG_D3D11VA
else if (d3d11_device_hwctx) {
ctx->d3d11_device = d3d11_device_hwctx->device;
ID3D11Device_AddRef(ctx->d3d11_device);
}
#endif
ret = nvenc_open_session(avctx);
if (ret < 0)
return ret;
ret = nvenc_check_capabilities(avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_FATAL, "Provided device doesn't support required NVENC features\n");
return ret;
}
} else {
int i, nb_devices = 0;
if (CHECK_CU(dl_fn->cuda_dl->cuInit(0)) < 0)
return AVERROR_UNKNOWN;
if (CHECK_CU(dl_fn->cuda_dl->cuDeviceGetCount(&nb_devices)) < 0)
return AVERROR_UNKNOWN;
if (!nb_devices) {
av_log(avctx, AV_LOG_FATAL, "No CUDA capable devices found\n");
return AVERROR_EXTERNAL;
}
av_log(avctx, AV_LOG_VERBOSE, "%d CUDA capable devices found\n", nb_devices);
dl_fn->nvenc_device_count = 0;
for (i = 0; i < nb_devices; ++i) {
if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES)
return 0;
}
if (ctx->device == LIST_DEVICES)
return AVERROR_EXIT;
if (!dl_fn->nvenc_device_count) {
av_log(avctx, AV_LOG_FATAL, "No capable devices found\n");
return AVERROR_EXTERNAL;
}
av_log(avctx, AV_LOG_FATAL, "Requested GPU %d, but only %d GPUs are available!\n", ctx->device, nb_devices);
return AVERROR(EINVAL);
}
return 0;
}
static av_cold void set_constqp(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
#if CONFIG_AV1_NVENC_ENCODER
int qmax = avctx->codec->id == AV_CODEC_ID_AV1 ? 255 : 51;
#else
int qmax = 51;
#endif
rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
if (ctx->init_qp_p >= 0) {
rc->constQP.qpInterP = ctx->init_qp_p;
if (ctx->init_qp_i >= 0 && ctx->init_qp_b >= 0) {
rc->constQP.qpIntra = ctx->init_qp_i;
rc->constQP.qpInterB = ctx->init_qp_b;
} else if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) {
rc->constQP.qpIntra = av_clip(
rc->constQP.qpInterP * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, qmax);
rc->constQP.qpInterB = av_clip(
rc->constQP.qpInterP * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, qmax);
} else {
rc->constQP.qpIntra = rc->constQP.qpInterP;
rc->constQP.qpInterB = rc->constQP.qpInterP;
}
} else if (ctx->cqp >= 0) {
rc->constQP.qpInterP = rc->constQP.qpInterB = rc->constQP.qpIntra = ctx->cqp;
if (avctx->b_quant_factor != 0.0)
rc->constQP.qpInterB = av_clip(ctx->cqp * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, qmax);
if (avctx->i_quant_factor != 0.0)
rc->constQP.qpIntra = av_clip(ctx->cqp * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, qmax);
}
avctx->qmin = -1;
avctx->qmax = -1;
}
static av_cold void set_vbr(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
int qp_inter_p;
#if CONFIG_AV1_NVENC_ENCODER
int qmax = avctx->codec->id == AV_CODEC_ID_AV1 ? 255 : 51;
#else
int qmax = 51;
#endif
if (avctx->qmin >= 0 && avctx->qmax >= 0) {
rc->enableMinQP = 1;
rc->enableMaxQP = 1;
rc->minQP.qpInterB = avctx->qmin;
rc->minQP.qpInterP = avctx->qmin;
rc->minQP.qpIntra = avctx->qmin;
rc->maxQP.qpInterB = avctx->qmax;
rc->maxQP.qpInterP = avctx->qmax;
rc->maxQP.qpIntra = avctx->qmax;
qp_inter_p = (avctx->qmax + 3 * avctx->qmin) / 4; // biased towards Qmin
} else if (avctx->qmin >= 0) {
rc->enableMinQP = 1;
rc->minQP.qpInterB = avctx->qmin;
rc->minQP.qpInterP = avctx->qmin;
rc->minQP.qpIntra = avctx->qmin;
qp_inter_p = avctx->qmin;
} else {
qp_inter_p = 26; // default to 26
}
rc->enableInitialRCQP = 1;
if (ctx->init_qp_p < 0) {
rc->initialRCQP.qpInterP = qp_inter_p;
} else {
rc->initialRCQP.qpInterP = ctx->init_qp_p;
}
if (ctx->init_qp_i < 0) {
if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) {
rc->initialRCQP.qpIntra = av_clip(
rc->initialRCQP.qpInterP * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, qmax);
} else {
rc->initialRCQP.qpIntra = rc->initialRCQP.qpInterP;
}
} else {
rc->initialRCQP.qpIntra = ctx->init_qp_i;
}
if (ctx->init_qp_b < 0) {
if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) {
rc->initialRCQP.qpInterB = av_clip(
rc->initialRCQP.qpInterP * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, qmax);
} else {
rc->initialRCQP.qpInterB = rc->initialRCQP.qpInterP;
}
} else {
rc->initialRCQP.qpInterB = ctx->init_qp_b;
}
}
static av_cold void set_lossless(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
rc->constQP.qpInterB = 0;
rc->constQP.qpInterP = 0;
rc->constQP.qpIntra = 0;
avctx->qmin = -1;
avctx->qmax = -1;
}
static void nvenc_override_rate_control(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
switch (ctx->rc) {
case NV_ENC_PARAMS_RC_CONSTQP:
set_constqp(avctx);
return;
#ifndef NVENC_NO_DEPRECATED_RC
case NV_ENC_PARAMS_RC_VBR_MINQP:
if (avctx->qmin < 0) {
av_log(avctx, AV_LOG_WARNING,
"The variable bitrate rate-control requires "
"the 'qmin' option set.\n");
set_vbr(avctx);
return;
}
/* fall through */
case NV_ENC_PARAMS_RC_VBR_HQ:
#endif
case NV_ENC_PARAMS_RC_VBR:
set_vbr(avctx);
break;
case NV_ENC_PARAMS_RC_CBR:
#ifndef NVENC_NO_DEPRECATED_RC
case NV_ENC_PARAMS_RC_CBR_HQ:
case NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ:
#endif
break;
}
rc->rateControlMode = ctx->rc;
}
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
static av_cold int nvenc_recalc_surfaces(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
// default minimum of 4 surfaces
// multiply by 2 for number of NVENCs on gpu (hardcode to 2)
// another multiply by 2 to avoid blocking next PBB group
int nb_surfaces = FFMAX(4, ctx->encode_config.frameIntervalP * 2 * 2);
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
// lookahead enabled
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
if (ctx->rc_lookahead > 0) {
// +1 is to account for lkd_bound calculation later
// +4 is to allow sufficient pipelining with lookahead
nb_surfaces = FFMAX(1, FFMAX(nb_surfaces, ctx->rc_lookahead + ctx->encode_config.frameIntervalP + 1 + 4));
if (nb_surfaces > ctx->nb_surfaces && ctx->nb_surfaces > 0)
{
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
av_log(avctx, AV_LOG_WARNING,
"Defined rc_lookahead requires more surfaces, "
"increasing used surfaces %d -> %d\n", ctx->nb_surfaces, nb_surfaces);
}
ctx->nb_surfaces = FFMAX(nb_surfaces, ctx->nb_surfaces);
} else {
if (ctx->encode_config.frameIntervalP > 1 && ctx->nb_surfaces < nb_surfaces && ctx->nb_surfaces > 0)
{
av_log(avctx, AV_LOG_WARNING,
"Defined b-frame requires more surfaces, "
"increasing used surfaces %d -> %d\n", ctx->nb_surfaces, nb_surfaces);
ctx->nb_surfaces = FFMAX(ctx->nb_surfaces, nb_surfaces);
}
else if (ctx->nb_surfaces <= 0)
ctx->nb_surfaces = nb_surfaces;
// otherwise use user specified value
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
}
ctx->nb_surfaces = FFMAX(1, FFMIN(MAX_REGISTERED_FRAMES, ctx->nb_surfaces));
ctx->async_depth = FFMIN(ctx->async_depth, ctx->nb_surfaces - 1);
// Output in the worst case will only start when the surface buffer is completely full.
// Hence we need to keep at least the max amount of surfaces plus the max reorder delay around.
ctx->frame_data_array_nb = ctx->nb_surfaces + ctx->encode_config.frameIntervalP - 1;
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
return 0;
}
static av_cold int nvenc_setup_rate_control(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
if (avctx->global_quality > 0)
av_log(avctx, AV_LOG_WARNING, "Using global_quality with nvenc is deprecated. Use qp instead.\n");
if (ctx->cqp < 0 && avctx->global_quality > 0)
ctx->cqp = avctx->global_quality;
if (avctx->bit_rate > 0) {
ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
ctx->encode_config.rcParams.maxBitRate = ctx->encode_config.rcParams.averageBitRate;
}
if (avctx->rc_max_rate > 0)
ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate;
#ifdef NVENC_HAVE_MULTIPASS
ctx->encode_config.rcParams.multiPass = ctx->multipass;
if (ctx->flags & NVENC_ONE_PASS)
ctx->encode_config.rcParams.multiPass = NV_ENC_MULTI_PASS_DISABLED;
if (ctx->flags & NVENC_TWO_PASSES || ctx->twopass > 0)
ctx->encode_config.rcParams.multiPass = NV_ENC_TWO_PASS_FULL_RESOLUTION;
if (ctx->rc < 0) {
if (ctx->cbr) {
ctx->rc = NV_ENC_PARAMS_RC_CBR;
} else if (ctx->cqp >= 0) {
ctx->rc = NV_ENC_PARAMS_RC_CONSTQP;
} else if (ctx->quality >= 0.0f) {
ctx->rc = NV_ENC_PARAMS_RC_VBR;
}
}
#else
if (ctx->rc < 0) {
if (ctx->flags & NVENC_ONE_PASS)
ctx->twopass = 0;
if (ctx->flags & NVENC_TWO_PASSES)
ctx->twopass = 1;
if (ctx->twopass < 0)
ctx->twopass = (ctx->flags & NVENC_LOWLATENCY) != 0;
if (ctx->cbr) {
if (ctx->twopass) {
ctx->rc = NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ;
} else {
ctx->rc = NV_ENC_PARAMS_RC_CBR;
}
} else if (ctx->cqp >= 0) {
ctx->rc = NV_ENC_PARAMS_RC_CONSTQP;
} else if (ctx->twopass) {
ctx->rc = NV_ENC_PARAMS_RC_VBR_HQ;
} else if (avctx->qmin >= 0 && avctx->qmax >= 0) {
ctx->rc = NV_ENC_PARAMS_RC_VBR_MINQP;
}
}
#endif
if (ctx->rc >= 0 && ctx->rc & RC_MODE_DEPRECATED) {
av_log(avctx, AV_LOG_WARNING, "Specified rc mode is deprecated.\n");
av_log(avctx, AV_LOG_WARNING, "Use -rc constqp/cbr/vbr, -tune and -multipass instead.\n");
ctx->rc &= ~RC_MODE_DEPRECATED;
}
#ifdef NVENC_HAVE_QP_CHROMA_OFFSETS
ctx->encode_config.rcParams.cbQPIndexOffset = ctx->qp_cb_offset;
ctx->encode_config.rcParams.crQPIndexOffset = ctx->qp_cr_offset;
#else
if (ctx->qp_cb_offset || ctx->qp_cr_offset)
av_log(avctx, AV_LOG_WARNING, "Failed setting QP CB/CR offsets, SDK 11.1 or greater required at compile time.\n");
#endif
#ifdef NVENC_HAVE_LDKFS
if (ctx->ldkfs)
ctx->encode_config.rcParams.lowDelayKeyFrameScale = ctx->ldkfs;
#endif
if (ctx->flags & NVENC_LOSSLESS) {
set_lossless(avctx);
} else if (ctx->rc >= 0) {
nvenc_override_rate_control(avctx);
} else {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR;
set_vbr(avctx);
}
if (avctx->rc_buffer_size > 0) {
ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
avctx->rc_buffer_size = ctx->encode_config.rcParams.vbvBufferSize = 2 * ctx->encode_config.rcParams.averageBitRate;
}
if (ctx->aq) {
ctx->encode_config.rcParams.enableAQ = 1;
ctx->encode_config.rcParams.aqStrength = ctx->aq_strength;
av_log(avctx, AV_LOG_VERBOSE, "AQ enabled.\n");
}
if (ctx->temporal_aq) {
ctx->encode_config.rcParams.enableTemporalAQ = 1;
av_log(avctx, AV_LOG_VERBOSE, "Temporal AQ enabled.\n");
}
if (ctx->rc_lookahead > 0) {
int lkd_bound = FFMIN(ctx->nb_surfaces, ctx->async_depth) -
ctx->encode_config.frameIntervalP - 4;
if (lkd_bound < 0) {
ctx->encode_config.rcParams.enableLookahead = 0;
av_log(avctx, AV_LOG_WARNING,
"Lookahead not enabled. Increase buffer delay (-delay).\n");
} else {
ctx->encode_config.rcParams.enableLookahead = 1;
ctx->encode_config.rcParams.lookaheadDepth = av_clip(ctx->rc_lookahead, 0, lkd_bound);
ctx->encode_config.rcParams.disableIadapt = ctx->no_scenecut;
ctx->encode_config.rcParams.disableBadapt = !ctx->b_adapt;
av_log(avctx, AV_LOG_VERBOSE,
"Lookahead enabled: depth %d, scenecut %s, B-adapt %s.\n",
ctx->encode_config.rcParams.lookaheadDepth,
ctx->encode_config.rcParams.disableIadapt ? "disabled" : "enabled",
ctx->encode_config.rcParams.disableBadapt ? "disabled" : "enabled");
if (ctx->encode_config.rcParams.lookaheadDepth < ctx->rc_lookahead)
av_log(avctx, AV_LOG_WARNING, "Clipping lookahead depth to %d (from %d) due to lack of surfaces/delay",
ctx->encode_config.rcParams.lookaheadDepth, ctx->rc_lookahead);
#ifdef NVENC_HAVE_LOOKAHEAD_LEVEL
if (ctx->lookahead_level >= 0) {
switch (ctx->lookahead_level) {
case NV_ENC_LOOKAHEAD_LEVEL_0:
case NV_ENC_LOOKAHEAD_LEVEL_1:
case NV_ENC_LOOKAHEAD_LEVEL_2:
case NV_ENC_LOOKAHEAD_LEVEL_3:
case NV_ENC_LOOKAHEAD_LEVEL_AUTOSELECT:
break;
default:
av_log(avctx, AV_LOG_ERROR, "Invalid lookahead level.\n");
return AVERROR(EINVAL);
}
ctx->encode_config.rcParams.lookaheadLevel = ctx->lookahead_level;
}
#endif
}
}
if (ctx->strict_gop) {
ctx->encode_config.rcParams.strictGOPTarget = 1;
av_log(avctx, AV_LOG_VERBOSE, "Strict GOP target enabled.\n");
}
if (ctx->nonref_p)
ctx->encode_config.rcParams.enableNonRefP = 1;
if (ctx->zerolatency)
ctx->encode_config.rcParams.zeroReorderDelay = 1;
if (ctx->quality) {
//convert from float to fixed point 8.8
int tmp_quality = (int)(ctx->quality * 256.0f);
ctx->encode_config.rcParams.targetQuality = (uint8_t)(tmp_quality >> 8);
ctx->encode_config.rcParams.targetQualityLSB = (uint8_t)(tmp_quality & 0xff);
av_log(avctx, AV_LOG_VERBOSE, "CQ(%d) mode enabled.\n", tmp_quality);
// CQ mode shall discard avg bitrate/vbv buffer size and honor only max bitrate
ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate = 0;
ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size = 0;
ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate;
}
return 0;
}
static av_cold int nvenc_setup_h264_config(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->encode_config;
NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config;
NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters;
const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(ctx->data_pix_fmt);
if ((pixdesc->flags & AV_PIX_FMT_FLAG_RGB) && !IS_GBRP(ctx->data_pix_fmt)) {
vui->colourMatrix = AVCOL_SPC_BT470BG;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = 0;
} else {
vui->colourMatrix = IS_GBRP(ctx->data_pix_fmt) ? AVCOL_SPC_RGB : avctx->colorspace;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P);
}
vui->colourDescriptionPresentFlag =
(vui->colourMatrix != 2 || vui->colourPrimaries != 2 || vui->transferCharacteristics != 2);
vui->videoSignalTypePresentFlag =
(vui->colourDescriptionPresentFlag
|| vui->videoFormat != 5
|| vui->videoFullRangeFlag != 0);
if (ctx->max_slice_size > 0) {
h264->sliceMode = 1;
h264->sliceModeData = ctx->max_slice_size;
} else {
h264->sliceMode = 3;
h264->sliceModeData = avctx->slices > 0 ? avctx->slices : 1;
}
if (ctx->intra_refresh) {
h264->enableIntraRefresh = 1;
h264->intraRefreshPeriod = cc->gopLength;
h264->intraRefreshCnt = cc->gopLength - 1;
cc->gopLength = NVENC_INFINITE_GOPLENGTH;
#ifdef NVENC_HAVE_SINGLE_SLICE_INTRA_REFRESH
h264->singleSliceIntraRefresh = ctx->single_slice_intra_refresh;
#endif
}
if (ctx->constrained_encoding)
h264->enableConstrainedEncoding = 1;
h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
h264->outputAUD = ctx->aud;
if (ctx->dpb_size >= 0) {
/* 0 means "let the hardware decide" */
h264->maxNumRefFrames = ctx->dpb_size;
}
h264->idrPeriod = cc->gopLength;
if (IS_CBR(cc->rcParams.rateControlMode)) {
h264->outputBufferingPeriodSEI = 1;
}
h264->outputPictureTimingSEI = 1;
#ifndef NVENC_NO_DEPRECATED_RC
if (cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ ||
cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_CBR_HQ ||
cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_VBR_HQ) {
h264->adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE;
h264->fmoMode = NV_ENC_H264_FMO_DISABLE;
}
#endif
if (ctx->flags & NVENC_LOSSLESS) {
h264->qpPrimeYZeroTransformBypassFlag = 1;
} else {
switch(ctx->profile) {
case NV_ENC_H264_PROFILE_BASELINE:
cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID;
avctx->profile = AV_PROFILE_H264_BASELINE;
break;
case NV_ENC_H264_PROFILE_MAIN:
cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID;
avctx->profile = AV_PROFILE_H264_MAIN;
break;
case NV_ENC_H264_PROFILE_HIGH:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
avctx->profile = AV_PROFILE_H264_HIGH;
break;
case NV_ENC_H264_PROFILE_HIGH_444P:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = AV_PROFILE_H264_HIGH_444_PREDICTIVE;
break;
}
}
// force setting profile as high444p if input is AV_PIX_FMT_YUV444P
if (IS_YUV444(ctx->data_pix_fmt)) {
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = AV_PROFILE_H264_HIGH_444_PREDICTIVE;
}
h264->chromaFormatIDC = avctx->profile == AV_PROFILE_H264_HIGH_444_PREDICTIVE ? 3 : 1;
h264->level = ctx->level;
#ifdef NVENC_HAVE_NEW_BIT_DEPTH_API
h264->inputBitDepth = h264->outputBitDepth =
IS_10BIT(ctx->data_pix_fmt) ? NV_ENC_BIT_DEPTH_10 : NV_ENC_BIT_DEPTH_8;
#endif
if (ctx->coder >= 0)
h264->entropyCodingMode = ctx->coder;
#ifdef NVENC_HAVE_BFRAME_REF_MODE
if (ctx->b_ref_mode >= 0)
h264->useBFramesAsRef = ctx->b_ref_mode;
#endif
#ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES
h264->numRefL0 = avctx->refs;
h264->numRefL1 = avctx->refs;
#endif
return 0;
}
static av_cold int nvenc_setup_hevc_config(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->encode_config;
NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig;
NV_ENC_CONFIG_HEVC_VUI_PARAMETERS *vui = &hevc->hevcVUIParameters;
const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(ctx->data_pix_fmt);
if ((pixdesc->flags & AV_PIX_FMT_FLAG_RGB) && !IS_GBRP(ctx->data_pix_fmt)) {
vui->colourMatrix = AVCOL_SPC_BT470BG;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = 0;
} else {
vui->colourMatrix = IS_GBRP(ctx->data_pix_fmt) ? AVCOL_SPC_RGB : avctx->colorspace;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P);
}
vui->colourDescriptionPresentFlag =
(vui->colourMatrix != 2 || vui->colourPrimaries != 2 || vui->transferCharacteristics != 2);
vui->videoSignalTypePresentFlag =
(vui->colourDescriptionPresentFlag
|| vui->videoFormat != 5
|| vui->videoFullRangeFlag != 0);
if (ctx->max_slice_size > 0) {
hevc->sliceMode = 1;
hevc->sliceModeData = ctx->max_slice_size;
} else {
hevc->sliceMode = 3;
hevc->sliceModeData = avctx->slices > 0 ? avctx->slices : 1;
}
if (ctx->intra_refresh) {
hevc->enableIntraRefresh = 1;
hevc->intraRefreshPeriod = cc->gopLength;
hevc->intraRefreshCnt = cc->gopLength - 1;
cc->gopLength = NVENC_INFINITE_GOPLENGTH;
#ifdef NVENC_HAVE_SINGLE_SLICE_INTRA_REFRESH
hevc->singleSliceIntraRefresh = ctx->single_slice_intra_refresh;
#endif
}
#ifdef NVENC_HAVE_HEVC_CONSTRAINED_ENCODING
if (ctx->constrained_encoding)
hevc->enableConstrainedEncoding = 1;
#endif
hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
hevc->outputAUD = ctx->aud;
if (ctx->dpb_size >= 0) {
/* 0 means "let the hardware decide" */
hevc->maxNumRefFramesInDPB = ctx->dpb_size;
}
hevc->idrPeriod = cc->gopLength;
if (IS_CBR(cc->rcParams.rateControlMode)) {
hevc->outputBufferingPeriodSEI = 1;
}
hevc->outputPictureTimingSEI = 1;
switch (ctx->profile) {
case NV_ENC_HEVC_PROFILE_MAIN:
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID;
avctx->profile = AV_PROFILE_HEVC_MAIN;
break;
case NV_ENC_HEVC_PROFILE_MAIN_10:
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID;
avctx->profile = AV_PROFILE_HEVC_MAIN_10;
break;
2016-09-28 14:21:03 +02:00
case NV_ENC_HEVC_PROFILE_REXT:
cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID;
avctx->profile = AV_PROFILE_HEVC_REXT;
2016-09-28 14:21:03 +02:00
break;
}
// force setting profile as main10 if input is 10 bit or if it should be encoded as 10 bit
if (IS_10BIT(ctx->data_pix_fmt) || ctx->highbitdepth) {
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID;
avctx->profile = AV_PROFILE_HEVC_MAIN_10;
}
2016-09-28 14:21:03 +02:00
// force setting profile as rext if input is yuv444
if (IS_YUV444(ctx->data_pix_fmt)) {
cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID;
avctx->profile = AV_PROFILE_HEVC_REXT;
2016-09-28 14:21:03 +02:00
}
hevc->chromaFormatIDC = IS_YUV444(ctx->data_pix_fmt) ? 3 : 1;
#ifdef NVENC_HAVE_NEW_BIT_DEPTH_API
hevc->inputBitDepth = IS_10BIT(ctx->data_pix_fmt) ? NV_ENC_BIT_DEPTH_10 : NV_ENC_BIT_DEPTH_8;
hevc->outputBitDepth = (IS_10BIT(ctx->data_pix_fmt) || ctx->highbitdepth) ? NV_ENC_BIT_DEPTH_10 : NV_ENC_BIT_DEPTH_8;
#else
hevc->pixelBitDepthMinus8 = IS_10BIT(ctx->data_pix_fmt) ? 2 : 0;
#endif
hevc->level = ctx->level;
hevc->tier = ctx->tier;
#ifdef NVENC_HAVE_HEVC_BFRAME_REF_MODE
if (ctx->b_ref_mode >= 0)
hevc->useBFramesAsRef = ctx->b_ref_mode;
#endif
#ifdef NVENC_HAVE_MULTIPLE_REF_FRAMES
hevc->numRefL0 = avctx->refs;
hevc->numRefL1 = avctx->refs;
#endif
#ifdef NVENC_HAVE_TEMPORAL_FILTER
if (ctx->tf_level >= 0) {
hevc->tfLevel = ctx->tf_level;
switch (ctx->tf_level)
{
case NV_ENC_TEMPORAL_FILTER_LEVEL_0:
case NV_ENC_TEMPORAL_FILTER_LEVEL_4:
break;
default:
av_log(avctx, AV_LOG_ERROR, "Invalid temporal filtering level.\n");
return AVERROR(EINVAL);
}
if (ctx->encode_config.frameIntervalP < 5)
av_log(avctx, AV_LOG_WARNING, "Temporal filtering needs at least 4 B-Frames (-bf 4).\n");
}
#endif
return 0;
}
#if CONFIG_AV1_NVENC_ENCODER
static av_cold int nvenc_setup_av1_config(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->encode_config;
NV_ENC_CONFIG_AV1 *av1 = &cc->encodeCodecConfig.av1Config;
const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(ctx->data_pix_fmt);
if ((pixdesc->flags & AV_PIX_FMT_FLAG_RGB) && !IS_GBRP(ctx->data_pix_fmt)) {
av1->matrixCoefficients = AVCOL_SPC_BT470BG;
av1->colorPrimaries = avctx->color_primaries;
av1->transferCharacteristics = avctx->color_trc;
av1->colorRange = 0;
} else {
av1->matrixCoefficients = IS_GBRP(ctx->data_pix_fmt) ? AVCOL_SPC_RGB : avctx->colorspace;
av1->colorPrimaries = avctx->color_primaries;
av1->transferCharacteristics = avctx->color_trc;
av1->colorRange = (avctx->color_range == AVCOL_RANGE_JPEG
|| ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P);
}
if (IS_YUV444(ctx->data_pix_fmt)) {
av_log(avctx, AV_LOG_ERROR, "AV1 High Profile not supported, required for 4:4:4 encoding\n");
return AVERROR(ENOTSUP);
} else {
cc->profileGUID = NV_ENC_AV1_PROFILE_MAIN_GUID;
avctx->profile = AV_PROFILE_AV1_MAIN;
}
if (ctx->dpb_size >= 0) {
/* 0 means "let the hardware decide" */
av1->maxNumRefFramesInDPB = ctx->dpb_size;
}
if (ctx->intra_refresh) {
av1->enableIntraRefresh = 1;
av1->intraRefreshPeriod = cc->gopLength;
av1->intraRefreshCnt = cc->gopLength - 1;
cc->gopLength = NVENC_INFINITE_GOPLENGTH;
}
av1->idrPeriod = cc->gopLength;
if (IS_CBR(cc->rcParams.rateControlMode)) {
av1->enableBitstreamPadding = 1;
}
if (ctx->tile_cols >= 0)
av1->numTileColumns = ctx->tile_cols;
if (ctx->tile_rows >= 0)
av1->numTileRows = ctx->tile_rows;
av1->outputAnnexBFormat = 0;
av1->level = ctx->level;
av1->tier = ctx->tier;
av1->enableTimingInfo = ctx->timing_info;
/* mp4 encapsulation requires sequence headers to be present on all keyframes for AV1 */
av1->disableSeqHdr = 0;
av1->repeatSeqHdr = 1;
av1->chromaFormatIDC = IS_YUV444(ctx->data_pix_fmt) ? 3 : 1;
#ifdef NVENC_HAVE_NEW_BIT_DEPTH_API
av1->inputBitDepth = IS_10BIT(ctx->data_pix_fmt) ? NV_ENC_BIT_DEPTH_10 : NV_ENC_BIT_DEPTH_8;
av1->outputBitDepth = (IS_10BIT(ctx->data_pix_fmt) || ctx->highbitdepth) ? NV_ENC_BIT_DEPTH_10 : NV_ENC_BIT_DEPTH_8;
#else
av1->inputPixelBitDepthMinus8 = IS_10BIT(ctx->data_pix_fmt) ? 2 : 0;
av1->pixelBitDepthMinus8 = (IS_10BIT(ctx->data_pix_fmt) || ctx->highbitdepth) ? 2 : 0;
#endif
if (ctx->b_ref_mode >= 0)
av1->useBFramesAsRef = ctx->b_ref_mode;
av1->numFwdRefs = avctx->refs;
av1->numBwdRefs = avctx->refs;
return 0;
}
#endif
static av_cold int nvenc_setup_codec_config(AVCodecContext *avctx)
{
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
return nvenc_setup_h264_config(avctx);
case AV_CODEC_ID_HEVC:
return nvenc_setup_hevc_config(avctx);
#if CONFIG_AV1_NVENC_ENCODER
case AV_CODEC_ID_AV1:
return nvenc_setup_av1_config(avctx);
#endif
/* Earlier switch/case will return if unknown codec is passed. */
}
return 0;
}
static void compute_dar(AVCodecContext *avctx, int *dw, int *dh) {
int sw, sh;
sw = avctx->width;
sh = avctx->height;
#if CONFIG_AV1_NVENC_ENCODER
if (avctx->codec->id == AV_CODEC_ID_AV1) {
/* For AV1 we actually need to calculate the render width/height, not the dar */
if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0
&& avctx->sample_aspect_ratio.num != avctx->sample_aspect_ratio.den)
{
if (avctx->sample_aspect_ratio.num > avctx->sample_aspect_ratio.den) {
sw = av_rescale(sw, avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den);
} else {
sh = av_rescale(sh, avctx->sample_aspect_ratio.den, avctx->sample_aspect_ratio.num);
}
}
*dw = sw;
*dh = sh;
return;
}
#endif
if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0) {
sw *= avctx->sample_aspect_ratio.num;
sh *= avctx->sample_aspect_ratio.den;
}
av_reduce(dw, dh, sw, sh, 1024 * 1024);
}
static av_cold int nvenc_setup_encoder(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NV_ENC_PRESET_CONFIG preset_config = { 0 };
NVENCSTATUS nv_status = NV_ENC_SUCCESS;
AVCPBProperties *cpb_props;
int res = 0;
int dw, dh;
ctx->encode_config.version = NV_ENC_CONFIG_VER;
ctx->init_encode_params.version = NV_ENC_INITIALIZE_PARAMS_VER;
ctx->init_encode_params.encodeHeight = avctx->height;
ctx->init_encode_params.encodeWidth = avctx->width;
ctx->init_encode_params.encodeConfig = &ctx->encode_config;
preset_config.version = NV_ENC_PRESET_CONFIG_VER;
preset_config.presetCfg.version = NV_ENC_CONFIG_VER;
#ifdef NVENC_HAVE_NEW_PRESETS
ctx->init_encode_params.tuningInfo = ctx->tuning_info;
if (ctx->flags & NVENC_LOSSLESS)
ctx->init_encode_params.tuningInfo = NV_ENC_TUNING_INFO_LOSSLESS;
else if (ctx->flags & NVENC_LOWLATENCY)
ctx->init_encode_params.tuningInfo = NV_ENC_TUNING_INFO_LOW_LATENCY;
nv_status = p_nvenc->nvEncGetEncodePresetConfigEx(ctx->nvencoder,
ctx->init_encode_params.encodeGUID,
ctx->init_encode_params.presetGUID,
ctx->init_encode_params.tuningInfo,
&preset_config);
#else
nv_status = p_nvenc->nvEncGetEncodePresetConfig(ctx->nvencoder,
ctx->init_encode_params.encodeGUID,
ctx->init_encode_params.presetGUID,
&preset_config);
#endif
if (nv_status != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, nv_status, "Cannot get the preset configuration");
memcpy(&ctx->encode_config, &preset_config.presetCfg, sizeof(ctx->encode_config));
ctx->encode_config.version = NV_ENC_CONFIG_VER;
compute_dar(avctx, &dw, &dh);
ctx->init_encode_params.darHeight = dh;
ctx->init_encode_params.darWidth = dw;
if (avctx->framerate.num > 0 && avctx->framerate.den > 0) {
ctx->init_encode_params.frameRateNum = avctx->framerate.num;
ctx->init_encode_params.frameRateDen = avctx->framerate.den;
} else {
ctx->init_encode_params.frameRateNum = avctx->time_base.den;
FF_DISABLE_DEPRECATION_WARNINGS
ctx->init_encode_params.frameRateDen = avctx->time_base.num
#if FF_API_TICKS_PER_FRAME
* avctx->ticks_per_frame
#endif
;
FF_ENABLE_DEPRECATION_WARNINGS
}
#ifdef NVENC_HAVE_UNIDIR_B
ctx->init_encode_params.enableUniDirectionalB = ctx->unidir_b;
#endif
ctx->init_encode_params.enableEncodeAsync = 0;
ctx->init_encode_params.enablePTD = 1;
#ifdef NVENC_HAVE_NEW_PRESETS
/* If lookahead isn't set from CLI, use value from preset.
* P6 & P7 presets may enable lookahead for better quality.
* */
if (ctx->rc_lookahead == 0 && ctx->encode_config.rcParams.enableLookahead)
ctx->rc_lookahead = ctx->encode_config.rcParams.lookaheadDepth;
#endif
if (ctx->weighted_pred == 1)
ctx->init_encode_params.enableWeightedPrediction = 1;
#ifdef NVENC_HAVE_SPLIT_FRAME_ENCODING
ctx->init_encode_params.splitEncodeMode = ctx->split_encode_mode;
if (ctx->split_encode_mode != NV_ENC_SPLIT_DISABLE_MODE) {
if (avctx->codec->id == AV_CODEC_ID_HEVC && ctx->weighted_pred == 1)
av_log(avctx, AV_LOG_WARNING, "Split encoding not supported with weighted prediction enabled.\n");
}
#endif
if (ctx->bluray_compat) {
ctx->aud = 1;
ctx->dpb_size = FFMIN(FFMAX(avctx->refs, 0), 6);
avctx->max_b_frames = FFMIN(avctx->max_b_frames, 3);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
/* maximum level depends on used resolution */
break;
case AV_CODEC_ID_HEVC:
ctx->level = NV_ENC_LEVEL_HEVC_51;
ctx->tier = NV_ENC_TIER_HEVC_HIGH;
break;
}
}
if (avctx->gop_size > 0) {
// only overwrite preset if a GOP size was selected as input
ctx->encode_config.gopLength = avctx->gop_size;
} else if (avctx->gop_size == 0) {
ctx->encode_config.frameIntervalP = 0;
ctx->encode_config.gopLength = 1;
}
if (avctx->max_b_frames >= 0 && ctx->encode_config.gopLength > 1) {
/* 0 is intra-only, 1 is I/P only, 2 is one B-Frame, 3 two B-frames, and so on. */
ctx->encode_config.frameIntervalP = avctx->max_b_frames + 1;
}
/* force to enable intra refresh */
if(ctx->single_slice_intra_refresh)
ctx->intra_refresh = 1;
avcodec/nvenc: better surface allocation alghoritm, fix rc_lookahead User selectable surfaces are not working correctly, if you set number of surfaces on cmdline, it will always use minimum 32 or 48 depends on selected resolution, but in nvenc it is not necessary to use so many surfaces. So from now you can define as low as 1 surface and nvenc will still work, it will ofcourse lower GPU memory usage by 95% and async_delay to zero That was the easy part, now littlebit more... Next part of this patch is to always prefer rc_lookahead to be more important for number of surfaces, than user defined surfaces value. Maximum rc_lookahead from nvidia documentation is 32, but could increase in future generations so there is no limit for this yet. Value async_depth is still accepted and prefered over rc_lookahead. There were also bug when you request more than rc_lookahead > 31, it will always set maximum 31, because surface numbers recalculation was after setting lookahead, which is now fixed. Results: If you set -rc_lookahead 32 and -bf 3 it will now use only 40 surfaces and lower GPU memory usage by 20%, also it will now increase PSNR by 0.012dB Two more comments: 1. from my internal test, i don't understand addition of 4 more surfaces when lookahead is calculated, i didn't used this and everything works as with those 4 more extra surfaces, does anybody know what is going on there? I looks like it was used for B frames which are calculated separately, because B frames maximum is 4. 2. rc_lookahead is defined default to -1, but in test condition if (ctx->rc_lookahead) which sets lookahead it will be always true, i don't know if this is intended behavior, so in default behavior is lookahead always on! This is default condition when rc_lokkahead is -1 (not defined on cmdline), whis is maybe something that is not intended: ctx->encode_config.rcParams.enableLookahead = 1; ctx->encode_config.rcParams.lookaheadDepth = 0; ctx->encode_config.rcParams.disableIadapt = 0; ctx->encode_config.rcParams.disableBadapt = 0; Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2016-11-21 12:17:43 +01:00
nvenc_recalc_surfaces(avctx);
res = nvenc_setup_rate_control(avctx);
if (res < 0)
return res;
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD;
} else {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME;
}
res = nvenc_setup_codec_config(avctx);
if (res)
return res;
res = nvenc_push_context(avctx);
if (res < 0)
return res;
nv_status = p_nvenc->nvEncInitializeEncoder(ctx->nvencoder, &ctx->init_encode_params);
if (nv_status != NV_ENC_SUCCESS) {
nvenc_pop_context(avctx);
return nvenc_print_error(avctx, nv_status, "InitializeEncoder failed");
}
#ifdef NVENC_HAVE_CUSTREAM_PTR
if (ctx->cu_context) {
nv_status = p_nvenc->nvEncSetIOCudaStreams(ctx->nvencoder, &ctx->cu_stream, &ctx->cu_stream);
if (nv_status != NV_ENC_SUCCESS) {
nvenc_pop_context(avctx);
return nvenc_print_error(avctx, nv_status, "SetIOCudaStreams failed");
}
}
#endif
res = nvenc_pop_context(avctx);
if (res < 0)
return res;
if (ctx->encode_config.frameIntervalP > 1)
avctx->has_b_frames = 2;
if (ctx->encode_config.rcParams.averageBitRate > 0)
avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate;
cpb_props = ff_encode_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
cpb_props->max_bitrate = ctx->encode_config.rcParams.maxBitRate;
cpb_props->avg_bitrate = avctx->bit_rate;
cpb_props->buffer_size = ctx->encode_config.rcParams.vbvBufferSize;
return 0;
}
static NV_ENC_BUFFER_FORMAT nvenc_map_buffer_format(enum AVPixelFormat pix_fmt)
{
switch (pix_fmt) {
case AV_PIX_FMT_YUV420P:
return NV_ENC_BUFFER_FORMAT_YV12;
case AV_PIX_FMT_NV12:
return NV_ENC_BUFFER_FORMAT_NV12;
case AV_PIX_FMT_P010:
case AV_PIX_FMT_P016:
return NV_ENC_BUFFER_FORMAT_YUV420_10BIT;
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_YUV444P:
return NV_ENC_BUFFER_FORMAT_YUV444;
case AV_PIX_FMT_GBRP16:
case AV_PIX_FMT_YUV444P16:
return NV_ENC_BUFFER_FORMAT_YUV444_10BIT;
case AV_PIX_FMT_0RGB32:
case AV_PIX_FMT_RGB32:
return NV_ENC_BUFFER_FORMAT_ARGB;
case AV_PIX_FMT_0BGR32:
case AV_PIX_FMT_BGR32:
return NV_ENC_BUFFER_FORMAT_ABGR;
case AV_PIX_FMT_X2RGB10:
return NV_ENC_BUFFER_FORMAT_ARGB10;
case AV_PIX_FMT_X2BGR10:
return NV_ENC_BUFFER_FORMAT_ABGR10;
default:
return NV_ENC_BUFFER_FORMAT_UNDEFINED;
}
}
static av_cold int nvenc_alloc_surface(AVCodecContext *avctx, int idx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NvencSurface* tmp_surface = &ctx->surfaces[idx];
NVENCSTATUS nv_status;
NV_ENC_CREATE_BITSTREAM_BUFFER allocOut = { 0 };
allocOut.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER;
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) {
ctx->surfaces[idx].in_ref = av_frame_alloc();
if (!ctx->surfaces[idx].in_ref)
return AVERROR(ENOMEM);
} else {
NV_ENC_CREATE_INPUT_BUFFER allocSurf = { 0 };
ctx->surfaces[idx].format = nvenc_map_buffer_format(ctx->data_pix_fmt);
if (ctx->surfaces[idx].format == NV_ENC_BUFFER_FORMAT_UNDEFINED) {
av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n",
av_get_pix_fmt_name(ctx->data_pix_fmt));
return AVERROR(EINVAL);
}
allocSurf.version = NV_ENC_CREATE_INPUT_BUFFER_VER;
allocSurf.width = avctx->width;
allocSurf.height = avctx->height;
allocSurf.bufferFmt = ctx->surfaces[idx].format;
nv_status = p_nvenc->nvEncCreateInputBuffer(ctx->nvencoder, &allocSurf);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "CreateInputBuffer failed");
}
ctx->surfaces[idx].input_surface = allocSurf.inputBuffer;
ctx->surfaces[idx].width = allocSurf.width;
ctx->surfaces[idx].height = allocSurf.height;
}
nv_status = p_nvenc->nvEncCreateBitstreamBuffer(ctx->nvencoder, &allocOut);
if (nv_status != NV_ENC_SUCCESS) {
int err = nvenc_print_error(avctx, nv_status, "CreateBitstreamBuffer failed");
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt != AV_PIX_FMT_CUDA && avctx->pix_fmt != AV_PIX_FMT_D3D11)
p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[idx].input_surface);
av_frame_free(&ctx->surfaces[idx].in_ref);
return err;
}
ctx->surfaces[idx].output_surface = allocOut.bitstreamBuffer;
2022-01-06 16:59:49 +01:00
av_fifo_write(ctx->unused_surface_queue, &tmp_surface, 1);
return 0;
}
static av_cold int nvenc_setup_surfaces(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int i, res = 0, res2;
ctx->surfaces = av_calloc(ctx->nb_surfaces, sizeof(*ctx->surfaces));
if (!ctx->surfaces)
return AVERROR(ENOMEM);
ctx->frame_data_array = av_calloc(ctx->frame_data_array_nb, sizeof(*ctx->frame_data_array));
if (!ctx->frame_data_array)
return AVERROR(ENOMEM);
ctx->timestamp_list = av_fifo_alloc2(ctx->nb_surfaces, sizeof(int64_t), 0);
if (!ctx->timestamp_list)
return AVERROR(ENOMEM);
2022-01-06 16:59:49 +01:00
ctx->unused_surface_queue = av_fifo_alloc2(ctx->nb_surfaces, sizeof(NvencSurface*), 0);
if (!ctx->unused_surface_queue)
return AVERROR(ENOMEM);
2022-01-06 16:59:49 +01:00
ctx->output_surface_queue = av_fifo_alloc2(ctx->nb_surfaces, sizeof(NvencSurface*), 0);
if (!ctx->output_surface_queue)
return AVERROR(ENOMEM);
2022-01-06 16:59:49 +01:00
ctx->output_surface_ready_queue = av_fifo_alloc2(ctx->nb_surfaces, sizeof(NvencSurface*), 0);
if (!ctx->output_surface_ready_queue)
return AVERROR(ENOMEM);
res = nvenc_push_context(avctx);
if (res < 0)
return res;
for (i = 0; i < ctx->nb_surfaces; i++) {
if ((res = nvenc_alloc_surface(avctx, i)) < 0)
goto fail;
}
fail:
res2 = nvenc_pop_context(avctx);
if (res2 < 0)
return res2;
return res;
}
static av_cold int nvenc_setup_extradata(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NVENCSTATUS nv_status;
uint32_t outSize = 0;
char tmpHeader[NV_MAX_SEQ_HDR_LEN];
NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 };
payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER;
payload.spsppsBuffer = tmpHeader;
payload.inBufferSize = sizeof(tmpHeader);
payload.outSPSPPSPayloadSize = &outSize;
nv_status = p_nvenc->nvEncGetSequenceParams(ctx->nvencoder, &payload);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "GetSequenceParams failed");
}
avctx->extradata_size = outSize;
avctx->extradata = av_mallocz(outSize + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
return AVERROR(ENOMEM);
}
memcpy(avctx->extradata, tmpHeader, outSize);
return 0;
}
av_cold int ff_nvenc_encode_close(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
int i, res;
/* the encoder has to be flushed before it can be closed */
if (ctx->nvencoder) {
NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER,
.encodePicFlags = NV_ENC_PIC_FLAG_EOS };
res = nvenc_push_context(avctx);
if (res < 0)
return res;
p_nvenc->nvEncEncodePicture(ctx->nvencoder, &params);
}
av_fifo_freep2(&ctx->timestamp_list);
2022-01-06 16:59:49 +01:00
av_fifo_freep2(&ctx->output_surface_ready_queue);
av_fifo_freep2(&ctx->output_surface_queue);
av_fifo_freep2(&ctx->unused_surface_queue);
if (ctx->frame_data_array) {
for (i = 0; i < ctx->nb_surfaces; i++)
av_buffer_unref(&ctx->frame_data_array[i].frame_opaque_ref);
av_freep(&ctx->frame_data_array);
}
2017-11-11 16:51:58 +01:00
if (ctx->surfaces && (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11)) {
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (ctx->registered_frames[i].mapped)
p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->registered_frames[i].in_map.mappedResource);
if (ctx->registered_frames[i].regptr)
p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr);
}
ctx->nb_registered_frames = 0;
}
if (ctx->surfaces) {
for (i = 0; i < ctx->nb_surfaces; ++i) {
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt != AV_PIX_FMT_CUDA && avctx->pix_fmt != AV_PIX_FMT_D3D11)
p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[i].input_surface);
av_frame_free(&ctx->surfaces[i].in_ref);
p_nvenc->nvEncDestroyBitstreamBuffer(ctx->nvencoder, ctx->surfaces[i].output_surface);
}
}
av_freep(&ctx->surfaces);
ctx->nb_surfaces = 0;
av_frame_free(&ctx->frame);
av_freep(&ctx->sei_data);
if (ctx->nvencoder) {
p_nvenc->nvEncDestroyEncoder(ctx->nvencoder);
res = nvenc_pop_context(avctx);
if (res < 0)
return res;
}
ctx->nvencoder = NULL;
if (ctx->cu_context_internal)
CHECK_CU(dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal));
ctx->cu_context = ctx->cu_context_internal = NULL;
2017-11-11 16:51:58 +01:00
#if CONFIG_D3D11VA
if (ctx->d3d11_device) {
ID3D11Device_Release(ctx->d3d11_device);
ctx->d3d11_device = NULL;
}
#endif
nvenc_free_functions(&dl_fn->nvenc_dl);
cuda_free_functions(&dl_fn->cuda_dl);
dl_fn->nvenc_device_count = 0;
av_log(avctx, AV_LOG_VERBOSE, "Nvenc unloaded\n");
return 0;
}
av_cold int ff_nvenc_encode_init(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int ret;
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) {
AVHWFramesContext *frames_ctx;
if (!avctx->hw_frames_ctx) {
2017-11-11 16:51:58 +01:00
av_log(avctx, AV_LOG_ERROR,
"hw_frames_ctx must be set when using GPU frames as input\n");
2017-11-11 16:51:58 +01:00
return AVERROR(EINVAL);
}
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
if (frames_ctx->format != avctx->pix_fmt) {
av_log(avctx, AV_LOG_ERROR,
"hw_frames_ctx must match the GPU frame type\n");
return AVERROR(EINVAL);
}
ctx->data_pix_fmt = frames_ctx->sw_format;
} else {
ctx->data_pix_fmt = avctx->pix_fmt;
}
if (ctx->rgb_mode == NVENC_RGB_MODE_DISABLED && IS_RGB(ctx->data_pix_fmt)) {
av_log(avctx, AV_LOG_ERROR, "Packed RGB input, but RGB support is disabled.\n");
return AVERROR(EINVAL);
}
ctx->frame = av_frame_alloc();
if (!ctx->frame)
return AVERROR(ENOMEM);
if ((ret = nvenc_load_libraries(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_device(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_encoder(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_surfaces(avctx)) < 0)
return ret;
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
if ((ret = nvenc_setup_extradata(avctx)) < 0)
return ret;
}
return 0;
}
static NvencSurface *get_free_frame(NvencContext *ctx)
{
NvencSurface *tmp_surf;
2022-01-06 16:59:49 +01:00
if (av_fifo_read(ctx->unused_surface_queue, &tmp_surf, 1) < 0)
// queue empty
return NULL;
return tmp_surf;
}
static int nvenc_copy_frame(AVCodecContext *avctx, NvencSurface *nv_surface,
NV_ENC_LOCK_INPUT_BUFFER *lock_buffer_params, const AVFrame *frame)
{
int dst_linesize[4] = {
lock_buffer_params->pitch,
lock_buffer_params->pitch,
lock_buffer_params->pitch,
lock_buffer_params->pitch
};
uint8_t *dst_data[4];
int ret;
if (frame->format == AV_PIX_FMT_YUV420P)
dst_linesize[1] = dst_linesize[2] >>= 1;
ret = av_image_fill_pointers(dst_data, frame->format, nv_surface->height,
lock_buffer_params->bufferDataPtr, dst_linesize);
if (ret < 0)
return ret;
if (frame->format == AV_PIX_FMT_YUV420P)
FFSWAP(uint8_t*, dst_data[1], dst_data[2]);
av_image_copy2(dst_data, dst_linesize,
frame->data, frame->linesize, frame->format,
avctx->width, avctx->height);
return 0;
}
static int nvenc_find_free_reg_resource(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NVENCSTATUS nv_status;
int i, first_round;
if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) {
for (first_round = 1; first_round >= 0; first_round--) {
2019-04-24 22:47:24 +02:00
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (!ctx->registered_frames[i].mapped) {
if (ctx->registered_frames[i].regptr) {
if (first_round)
continue;
nv_status = p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr);
if (nv_status != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, nv_status, "Failed unregistering unused input resource");
ctx->registered_frames[i].ptr = NULL;
ctx->registered_frames[i].regptr = NULL;
}
return i;
}
}
}
} else {
return ctx->nb_registered_frames++;
}
av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n");
return AVERROR(ENOMEM);
}
static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)frame->hw_frames_ctx->data;
NV_ENC_REGISTER_RESOURCE reg = { 0 };
int i, idx, ret;
for (i = 0; i < ctx->nb_registered_frames; i++) {
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA && ctx->registered_frames[i].ptr == frame->data[0])
return i;
else if (avctx->pix_fmt == AV_PIX_FMT_D3D11 && ctx->registered_frames[i].ptr == frame->data[0] && ctx->registered_frames[i].ptr_index == (intptr_t)frame->data[1])
return i;
}
idx = nvenc_find_free_reg_resource(avctx);
if (idx < 0)
return idx;
reg.version = NV_ENC_REGISTER_RESOURCE_VER;
reg.width = frames_ctx->width;
reg.height = frames_ctx->height;
reg.pitch = frame->linesize[0];
reg.resourceToRegister = frame->data[0];
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR;
}
else if (avctx->pix_fmt == AV_PIX_FMT_D3D11) {
reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_DIRECTX;
reg.subResourceIndex = (intptr_t)frame->data[1];
}
reg.bufferFormat = nvenc_map_buffer_format(frames_ctx->sw_format);
if (reg.bufferFormat == NV_ENC_BUFFER_FORMAT_UNDEFINED) {
av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n",
av_get_pix_fmt_name(frames_ctx->sw_format));
return AVERROR(EINVAL);
}
ret = p_nvenc->nvEncRegisterResource(ctx->nvencoder, &reg);
if (ret != NV_ENC_SUCCESS) {
nvenc_print_error(avctx, ret, "Error registering an input resource");
return AVERROR_UNKNOWN;
}
2017-11-11 16:51:58 +01:00
ctx->registered_frames[idx].ptr = frame->data[0];
ctx->registered_frames[idx].ptr_index = reg.subResourceIndex;
ctx->registered_frames[idx].regptr = reg.registeredResource;
return idx;
}
static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame,
NvencSurface *nvenc_frame)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
int res;
NVENCSTATUS nv_status;
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) {
int reg_idx = nvenc_register_frame(avctx, frame);
if (reg_idx < 0) {
2017-11-11 16:51:58 +01:00
av_log(avctx, AV_LOG_ERROR, "Could not register an input HW frame\n");
return reg_idx;
}
res = av_frame_ref(nvenc_frame->in_ref, frame);
if (res < 0)
return res;
if (!ctx->registered_frames[reg_idx].mapped) {
ctx->registered_frames[reg_idx].in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER;
ctx->registered_frames[reg_idx].in_map.registeredResource = ctx->registered_frames[reg_idx].regptr;
nv_status = p_nvenc->nvEncMapInputResource(ctx->nvencoder, &ctx->registered_frames[reg_idx].in_map);
if (nv_status != NV_ENC_SUCCESS) {
av_frame_unref(nvenc_frame->in_ref);
return nvenc_print_error(avctx, nv_status, "Error mapping an input resource");
}
}
ctx->registered_frames[reg_idx].mapped += 1;
nvenc_frame->reg_idx = reg_idx;
nvenc_frame->input_surface = ctx->registered_frames[reg_idx].in_map.mappedResource;
nvenc_frame->format = ctx->registered_frames[reg_idx].in_map.mappedBufferFmt;
nvenc_frame->pitch = frame->linesize[0];
return 0;
} else {
NV_ENC_LOCK_INPUT_BUFFER lockBufferParams = { 0 };
lockBufferParams.version = NV_ENC_LOCK_INPUT_BUFFER_VER;
lockBufferParams.inputBuffer = nvenc_frame->input_surface;
nv_status = p_nvenc->nvEncLockInputBuffer(ctx->nvencoder, &lockBufferParams);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "Failed locking nvenc input buffer");
}
nvenc_frame->pitch = lockBufferParams.pitch;
res = nvenc_copy_frame(avctx, nvenc_frame, &lockBufferParams, frame);
nv_status = p_nvenc->nvEncUnlockInputBuffer(ctx->nvencoder, nvenc_frame->input_surface);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "Failed unlocking input buffer!");
}
return res;
}
}
static void nvenc_codec_specific_pic_params(AVCodecContext *avctx,
NV_ENC_PIC_PARAMS *params,
NV_ENC_SEI_PAYLOAD *sei_data,
int sei_count)
{
NvencContext *ctx = avctx->priv_data;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
params->codecPicParams.h264PicParams.sliceMode =
ctx->encode_config.encodeCodecConfig.h264Config.sliceMode;
params->codecPicParams.h264PicParams.sliceModeData =
ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData;
if (sei_count > 0) {
params->codecPicParams.h264PicParams.seiPayloadArray = sei_data;
params->codecPicParams.h264PicParams.seiPayloadArrayCnt = sei_count;
}
break;
case AV_CODEC_ID_HEVC:
params->codecPicParams.hevcPicParams.sliceMode =
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceMode;
params->codecPicParams.hevcPicParams.sliceModeData =
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData;
if (sei_count > 0) {
params->codecPicParams.hevcPicParams.seiPayloadArray = sei_data;
params->codecPicParams.hevcPicParams.seiPayloadArrayCnt = sei_count;
}
break;
#if CONFIG_AV1_NVENC_ENCODER
case AV_CODEC_ID_AV1:
params->codecPicParams.av1PicParams.numTileColumns =
ctx->encode_config.encodeCodecConfig.av1Config.numTileColumns;
params->codecPicParams.av1PicParams.numTileRows =
ctx->encode_config.encodeCodecConfig.av1Config.numTileRows;
if (sei_count > 0) {
params->codecPicParams.av1PicParams.obuPayloadArray = sei_data;
params->codecPicParams.av1PicParams.obuPayloadArrayCnt = sei_count;
}
break;
#endif
}
}
static inline void timestamp_queue_enqueue(AVFifo *queue, int64_t timestamp)
{
av_fifo_write(queue, &timestamp, 1);
}
static inline int64_t timestamp_queue_dequeue(AVFifo *queue)
{
int64_t timestamp = AV_NOPTS_VALUE;
2022-01-06 16:59:49 +01:00
// The following call might fail if the queue is empty.
av_fifo_read(queue, &timestamp, 1);
return timestamp;
}
static int nvenc_set_timestamp(AVCodecContext *avctx,
NV_ENC_LOCK_BITSTREAM *params,
AVPacket *pkt)
{
NvencContext *ctx = avctx->priv_data;
pkt->pts = params->outputTimeStamp;
if (avctx->codec_descriptor->props & AV_CODEC_PROP_REORDER) {
FF_DISABLE_DEPRECATION_WARNINGS
pkt->dts = timestamp_queue_dequeue(ctx->timestamp_list) -
#if FF_API_TICKS_PER_FRAME
FFMAX(avctx->ticks_per_frame, 1) *
#endif
FFMAX(ctx->encode_config.frameIntervalP - 1, 0);
FF_ENABLE_DEPRECATION_WARNINGS
} else {
pkt->dts = pkt->pts;
}
return 0;
}
static int nvenc_store_frame_data(AVCodecContext *avctx, NV_ENC_PIC_PARAMS *pic_params, const AVFrame *frame)
{
NvencContext *ctx = avctx->priv_data;
int res = 0;
int idx = ctx->frame_data_array_pos;
NvencFrameData *frame_data = &ctx->frame_data_array[idx];
// in case the encoder got reconfigured, there might be leftovers
av_buffer_unref(&frame_data->frame_opaque_ref);
if (frame->opaque_ref && avctx->flags & AV_CODEC_FLAG_COPY_OPAQUE) {
frame_data->frame_opaque_ref = av_buffer_ref(frame->opaque_ref);
if (!frame_data->frame_opaque_ref)
return AVERROR(ENOMEM);
}
frame_data->duration = frame->duration;
frame_data->frame_opaque = frame->opaque;
ctx->frame_data_array_pos = (ctx->frame_data_array_pos + 1) % ctx->frame_data_array_nb;
pic_params->inputDuration = idx;
return res;
}
static int nvenc_retrieve_frame_data(AVCodecContext *avctx, NV_ENC_LOCK_BITSTREAM *lock_params, AVPacket *pkt)
{
NvencContext *ctx = avctx->priv_data;
int res = 0;
int idx = lock_params->outputDuration;
NvencFrameData *frame_data = &ctx->frame_data_array[idx];
pkt->duration = frame_data->duration;
if (avctx->flags & AV_CODEC_FLAG_COPY_OPAQUE) {
pkt->opaque = frame_data->frame_opaque;
pkt->opaque_ref = frame_data->frame_opaque_ref;
frame_data->frame_opaque_ref = NULL;
}
av_buffer_unref(&frame_data->frame_opaque_ref);
return res;
}
static int process_output_surface(AVCodecContext *avctx, AVPacket *pkt, NvencSurface *tmpoutsurf)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NV_ENC_LOCK_BITSTREAM lock_params = { 0 };
NVENCSTATUS nv_status;
int res = 0;
enum AVPictureType pict_type;
lock_params.version = NV_ENC_LOCK_BITSTREAM_VER;
lock_params.doNotWait = 0;
lock_params.outputBitstream = tmpoutsurf->output_surface;
nv_status = p_nvenc->nvEncLockBitstream(ctx->nvencoder, &lock_params);
if (nv_status != NV_ENC_SUCCESS) {
res = nvenc_print_error(avctx, nv_status, "Failed locking bitstream buffer");
goto error;
}
res = ff_get_encode_buffer(avctx, pkt, lock_params.bitstreamSizeInBytes, 0);
if (res < 0) {
p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface);
goto error;
}
memcpy(pkt->data, lock_params.bitstreamBufferPtr, lock_params.bitstreamSizeInBytes);
nv_status = p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface);
if (nv_status != NV_ENC_SUCCESS) {
res = nvenc_print_error(avctx, nv_status, "Failed unlocking bitstream buffer, expect the gates of mordor to open");
goto error;
}
2017-11-11 16:51:58 +01:00
if (avctx->pix_fmt == AV_PIX_FMT_CUDA || avctx->pix_fmt == AV_PIX_FMT_D3D11) {
ctx->registered_frames[tmpoutsurf->reg_idx].mapped -= 1;
if (ctx->registered_frames[tmpoutsurf->reg_idx].mapped == 0) {
nv_status = p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->registered_frames[tmpoutsurf->reg_idx].in_map.mappedResource);
if (nv_status != NV_ENC_SUCCESS) {
res = nvenc_print_error(avctx, nv_status, "Failed unmapping input resource");
goto error;
}
} else if (ctx->registered_frames[tmpoutsurf->reg_idx].mapped < 0) {
res = AVERROR_BUG;
goto error;
}
av_frame_unref(tmpoutsurf->in_ref);
tmpoutsurf->input_surface = NULL;
}
switch (lock_params.pictureType) {
case NV_ENC_PIC_TYPE_IDR:
pkt->flags |= AV_PKT_FLAG_KEY;
case NV_ENC_PIC_TYPE_I:
pict_type = AV_PICTURE_TYPE_I;
break;
case NV_ENC_PIC_TYPE_P:
pict_type = AV_PICTURE_TYPE_P;
break;
case NV_ENC_PIC_TYPE_B:
pict_type = AV_PICTURE_TYPE_B;
break;
case NV_ENC_PIC_TYPE_BI:
pict_type = AV_PICTURE_TYPE_BI;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown picture type encountered, expect the output to be broken.\n");
av_log(avctx, AV_LOG_ERROR, "Please report this error and include as much information on how to reproduce it as possible.\n");
res = AVERROR_EXTERNAL;
goto error;
}
ff_side_data_set_encoder_stats(pkt,
(lock_params.frameAvgQP - 1) * FF_QP2LAMBDA, NULL, 0, pict_type);
res = nvenc_set_timestamp(avctx, &lock_params, pkt);
if (res < 0)
goto error2;
res = nvenc_retrieve_frame_data(avctx, &lock_params, pkt);
if (res < 0)
goto error2;
return 0;
error:
timestamp_queue_dequeue(ctx->timestamp_list);
error2:
return res;
}
static int output_ready(AVCodecContext *avctx, int flush)
{
NvencContext *ctx = avctx->priv_data;
int nb_ready, nb_pending;
2022-01-06 16:59:49 +01:00
nb_ready = av_fifo_can_read(ctx->output_surface_ready_queue);
nb_pending = av_fifo_can_read(ctx->output_surface_queue);
if (flush)
return nb_ready > 0;
return (nb_ready > 0) && (nb_ready + nb_pending >= ctx->async_depth);
}
static int prepare_sei_data_array(AVCodecContext *avctx, const AVFrame *frame)
{
NvencContext *ctx = avctx->priv_data;
int sei_count = 0;
int i, res;
if (ctx->a53_cc && av_frame_get_side_data(frame, AV_FRAME_DATA_A53_CC)) {
void *a53_data = NULL;
size_t a53_size = 0;
if (ff_alloc_a53_sei(frame, 0, &a53_data, &a53_size) < 0) {
av_log(ctx, AV_LOG_ERROR, "Not enough memory for closed captions, skipping\n");
}
if (a53_data) {
void *tmp = av_fast_realloc(ctx->sei_data,
&ctx->sei_data_size,
(sei_count + 1) * sizeof(*ctx->sei_data));
if (!tmp) {
av_free(a53_data);
res = AVERROR(ENOMEM);
goto error;
} else {
ctx->sei_data = tmp;
ctx->sei_data[sei_count].payloadSize = (uint32_t)a53_size;
ctx->sei_data[sei_count].payload = (uint8_t*)a53_data;
#if CONFIG_AV1_NVENC_ENCODER
if (avctx->codec->id == AV_CODEC_ID_AV1)
ctx->sei_data[sei_count].payloadType = AV1_METADATA_TYPE_ITUT_T35;
else
#endif
ctx->sei_data[sei_count].payloadType = SEI_TYPE_USER_DATA_REGISTERED_ITU_T_T35;
sei_count++;
}
}
}
if (ctx->s12m_tc && av_frame_get_side_data(frame, AV_FRAME_DATA_S12M_TIMECODE)) {
void *tc_data = NULL;
size_t tc_size = 0;
if (ff_alloc_timecode_sei(frame, avctx->framerate, 0, &tc_data, &tc_size) < 0) {
av_log(ctx, AV_LOG_ERROR, "Not enough memory for timecode sei, skipping\n");
}
if (tc_data) {
void *tmp = av_fast_realloc(ctx->sei_data,
&ctx->sei_data_size,
(sei_count + 1) * sizeof(*ctx->sei_data));
if (!tmp) {
av_free(tc_data);
res = AVERROR(ENOMEM);
goto error;
} else {
ctx->sei_data = tmp;
ctx->sei_data[sei_count].payloadSize = (uint32_t)tc_size;
ctx->sei_data[sei_count].payload = (uint8_t*)tc_data;
#if CONFIG_AV1_NVENC_ENCODER
if (avctx->codec->id == AV_CODEC_ID_AV1)
ctx->sei_data[sei_count].payloadType = AV1_METADATA_TYPE_TIMECODE;
else
#endif
ctx->sei_data[sei_count].payloadType = SEI_TYPE_TIME_CODE;
sei_count++;
}
}
}
if (!ctx->udu_sei)
return sei_count;
for (i = 0; i < frame->nb_side_data; i++) {
AVFrameSideData *side_data = frame->side_data[i];
void *tmp;
if (side_data->type != AV_FRAME_DATA_SEI_UNREGISTERED)
continue;
tmp = av_fast_realloc(ctx->sei_data,
&ctx->sei_data_size,
(sei_count + 1) * sizeof(*ctx->sei_data));
if (!tmp) {
res = AVERROR(ENOMEM);
goto error;
} else {
ctx->sei_data = tmp;
ctx->sei_data[sei_count].payloadSize = side_data->size;
ctx->sei_data[sei_count].payloadType = SEI_TYPE_USER_DATA_UNREGISTERED;
ctx->sei_data[sei_count].payload = av_memdup(side_data->data, side_data->size);
if (!ctx->sei_data[sei_count].payload) {
res = AVERROR(ENOMEM);
goto error;
}
sei_count++;
}
}
return sei_count;
error:
for (i = 0; i < sei_count; i++)
av_freep(&(ctx->sei_data[i].payload));
return res;
}
static void reconfig_encoder(AVCodecContext *avctx, const AVFrame *frame)
{
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
NVENCSTATUS ret;
NV_ENC_RECONFIGURE_PARAMS params = { 0 };
int needs_reconfig = 0;
int needs_encode_config = 0;
int reconfig_bitrate = 0, reconfig_dar = 0;
int dw, dh;
params.version = NV_ENC_RECONFIGURE_PARAMS_VER;
params.reInitEncodeParams = ctx->init_encode_params;
compute_dar(avctx, &dw, &dh);
if (dw != ctx->init_encode_params.darWidth || dh != ctx->init_encode_params.darHeight) {
av_log(avctx, AV_LOG_VERBOSE,
"aspect ratio change (DAR): %d:%d -> %d:%d\n",
ctx->init_encode_params.darWidth,
ctx->init_encode_params.darHeight, dw, dh);
params.reInitEncodeParams.darHeight = dh;
params.reInitEncodeParams.darWidth = dw;
needs_reconfig = 1;
reconfig_dar = 1;
}
if (ctx->rc != NV_ENC_PARAMS_RC_CONSTQP && ctx->support_dyn_bitrate) {
if (avctx->bit_rate > 0 && params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate != avctx->bit_rate) {
av_log(avctx, AV_LOG_VERBOSE,
"avg bitrate change: %d -> %d\n",
params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate,
(uint32_t)avctx->bit_rate);
params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate = avctx->bit_rate;
reconfig_bitrate = 1;
}
if (avctx->rc_max_rate > 0 && ctx->encode_config.rcParams.maxBitRate != avctx->rc_max_rate) {
av_log(avctx, AV_LOG_VERBOSE,
"max bitrate change: %d -> %d\n",
params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate,
(uint32_t)avctx->rc_max_rate);
params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate = avctx->rc_max_rate;
reconfig_bitrate = 1;
}
if (avctx->rc_buffer_size > 0 && ctx->encode_config.rcParams.vbvBufferSize != avctx->rc_buffer_size) {
av_log(avctx, AV_LOG_VERBOSE,
"vbv buffer size change: %d -> %d\n",
params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize,
avctx->rc_buffer_size);
params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize = avctx->rc_buffer_size;
reconfig_bitrate = 1;
}
if (reconfig_bitrate) {
params.resetEncoder = 1;
params.forceIDR = 1;
needs_encode_config = 1;
needs_reconfig = 1;
}
}
if (!needs_encode_config)
params.reInitEncodeParams.encodeConfig = NULL;
if (needs_reconfig) {
ret = p_nvenc->nvEncReconfigureEncoder(ctx->nvencoder, &params);
if (ret != NV_ENC_SUCCESS) {
nvenc_print_error(avctx, ret, "failed to reconfigure nvenc");
} else {
if (reconfig_dar) {
ctx->init_encode_params.darHeight = dh;
ctx->init_encode_params.darWidth = dw;
}
if (reconfig_bitrate) {
ctx->encode_config.rcParams.averageBitRate = params.reInitEncodeParams.encodeConfig->rcParams.averageBitRate;
ctx->encode_config.rcParams.maxBitRate = params.reInitEncodeParams.encodeConfig->rcParams.maxBitRate;
ctx->encode_config.rcParams.vbvBufferSize = params.reInitEncodeParams.encodeConfig->rcParams.vbvBufferSize;
}
}
}
}
static int nvenc_send_frame(AVCodecContext *avctx, const AVFrame *frame)
{
NVENCSTATUS nv_status;
2017-09-02 19:42:13 +02:00
NvencSurface *tmp_out_surf, *in_surf;
int res, res2;
int sei_count = 0;
int i;
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NV_ENC_PIC_PARAMS pic_params = { 0 };
pic_params.version = NV_ENC_PIC_PARAMS_VER;
2017-11-11 16:51:58 +01:00
if ((!ctx->cu_context && !ctx->d3d11_device) || !ctx->nvencoder)
return AVERROR(EINVAL);
if (frame && frame->buf[0]) {
2017-09-02 19:42:13 +02:00
in_surf = get_free_frame(ctx);
if (!in_surf)
return AVERROR(EAGAIN);
res = nvenc_push_context(avctx);
if (res < 0)
return res;
reconfig_encoder(avctx, frame);
2017-09-02 19:42:13 +02:00
res = nvenc_upload_frame(avctx, frame, in_surf);
res2 = nvenc_pop_context(avctx);
if (res2 < 0)
return res2;
if (res)
return res;
2017-09-02 19:42:13 +02:00
pic_params.inputBuffer = in_surf->input_surface;
pic_params.bufferFmt = in_surf->format;
pic_params.inputWidth = in_surf->width;
pic_params.inputHeight = in_surf->height;
pic_params.inputPitch = in_surf->pitch;
pic_params.outputBitstream = in_surf->output_surface;
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
if (frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST)
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM;
else
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP;
} else {
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;
}
if (ctx->forced_idr >= 0 && frame->pict_type == AV_PICTURE_TYPE_I) {
pic_params.encodePicFlags =
ctx->forced_idr ? NV_ENC_PIC_FLAG_FORCEIDR : NV_ENC_PIC_FLAG_FORCEINTRA;
} else {
pic_params.encodePicFlags = 0;
}
pic_params.frameIdx = ctx->frame_idx_counter++;
pic_params.inputTimeStamp = frame->pts;
if (ctx->extra_sei) {
res = prepare_sei_data_array(avctx, frame);
if (res < 0)
return res;
sei_count = res;
}
res = nvenc_store_frame_data(avctx, &pic_params, frame);
if (res < 0)
return res;
nvenc_codec_specific_pic_params(avctx, &pic_params, ctx->sei_data, sei_count);
} else {
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS;
}
res = nvenc_push_context(avctx);
if (res < 0)
return res;
nv_status = p_nvenc->nvEncEncodePicture(ctx->nvencoder, &pic_params);
for (i = 0; i < sei_count; i++)
av_freep(&(ctx->sei_data[i].payload));
res = nvenc_pop_context(avctx);
if (res < 0)
return res;
if (nv_status != NV_ENC_SUCCESS &&
nv_status != NV_ENC_ERR_NEED_MORE_INPUT)
return nvenc_print_error(avctx, nv_status, "EncodePicture failed!");
if (frame && frame->buf[0]) {
2022-01-06 16:59:49 +01:00
av_fifo_write(ctx->output_surface_queue, &in_surf, 1);
if (avctx->codec_descriptor->props & AV_CODEC_PROP_REORDER)
timestamp_queue_enqueue(ctx->timestamp_list, frame->pts);
}
/* all the pending buffers are now ready for output */
if (nv_status == NV_ENC_SUCCESS) {
2022-01-06 16:59:49 +01:00
while (av_fifo_read(ctx->output_surface_queue, &tmp_out_surf, 1) >= 0)
av_fifo_write(ctx->output_surface_ready_queue, &tmp_out_surf, 1);
}
return 0;
}
int ff_nvenc_receive_packet(AVCodecContext *avctx, AVPacket *pkt)
{
2017-09-02 19:42:13 +02:00
NvencSurface *tmp_out_surf;
int res, res2;
NvencContext *ctx = avctx->priv_data;
AVFrame *frame = ctx->frame;
2017-11-11 16:51:58 +01:00
if ((!ctx->cu_context && !ctx->d3d11_device) || !ctx->nvencoder)
return AVERROR(EINVAL);
if (!frame->buf[0]) {
res = ff_encode_get_frame(avctx, frame);
if (res < 0 && res != AVERROR_EOF)
return res;
}
res = nvenc_send_frame(avctx, frame);
if (res < 0) {
if (res != AVERROR(EAGAIN))
return res;
} else
av_frame_unref(frame);
if (output_ready(avctx, avctx->internal->draining)) {
2022-01-06 16:59:49 +01:00
av_fifo_read(ctx->output_surface_ready_queue, &tmp_out_surf, 1);
res = nvenc_push_context(avctx);
if (res < 0)
return res;
2017-09-02 19:42:13 +02:00
res = process_output_surface(avctx, pkt, tmp_out_surf);
res2 = nvenc_pop_context(avctx);
if (res2 < 0)
return res2;
if (res)
return res;
2022-01-06 16:59:49 +01:00
av_fifo_write(ctx->unused_surface_queue, &tmp_out_surf, 1);
} else if (avctx->internal->draining) {
return AVERROR_EOF;
} else {
return AVERROR(EAGAIN);
}
return 0;
}
av_cold void ff_nvenc_encode_flush(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
nvenc_send_frame(avctx, NULL);
av_fifo_reset2(ctx->timestamp_list);
}